Cholinergic influence of the laterodorsal tegmental nucleus on neuronal activity in the rat lateral geniculate nucleus

1986 ◽  
Vol 56 (5) ◽  
pp. 1297-1309 ◽  
Author(s):  
Y. Kayama ◽  
M. Takagi ◽  
T. Ogawa

The effect of stimulation of the laterodorsal tegmental nucleus (LDT) on the activity of single neurons in the dorsal lateral geniculate nucleus was studied in rats anesthetized with urethan. The LDT is the largest aggregation of cholinergic neurons in the brain stem that project to the thalamus, and in the rat is sufficiently compact to permit its localized stimulation. Position of stimulating electrodes was confirmed on histological sections processed with NADPH-diaphorase histochemistry, which in the rat brain stem selectively stains cholinergic neurons. Repetitive stimulation of the LDT at 200 Hz increased the firing rate of substantially all geniculate relay neurons and weakly depressed the activity of intrinsic interneurons. These effects usually occurred within several hundred milliseconds after the onset of stimulation and began to fade within a few seconds, despite continuing stimulation. The excitatory effects on relay neurons were blocked by scopolamine applied ionophoretically or intravenously, but not by noradrenergic antagonists, suggesting the cholinergic nature of LDT-induced excitation. During LDT stimulation the number of spikes evoked by photic stimulation of the receptive field of relay neurons usually increased, but it remained unchanged in a few cases. The increase was due to simple enhancement of photic responses or due to conversion of phasic type responses to tonic ones. As to the balance of background activity and photic responses, the effects of LDT stimulation varied from neuron to neuron. Even in a given neuron, the effects varied depending on its excitability level or the nature of the photic stimulation. These results show that the cholinergic projection from the LDT may be involved in the ascending reticular activating system, although the functional significance of the activating system in visual information processing in the geniculate nucleus remains to be clarified.

2020 ◽  
Vol 124 (2) ◽  
pp. 404-417 ◽  
Author(s):  
Peter W. Campbell ◽  
Gubbi Govindaiah ◽  
Sean P. Masterson ◽  
Martha E. Bickford ◽  
William Guido

The thalamic reticular nucleus (TRN) modulates thalamocortical transmission through inhibition. In mouse, TRN terminals in the dorsal lateral geniculate nucleus (dLGN) form synapses with relay neurons but not interneurons. Stimulation of TRN terminals in dLGN leads to a frequency-dependent form of inhibition, with higher rates of stimulation leading to a greater suppression of spike firing. Thus, TRN inhibition appears more dynamic than previously recognized, having a graded rather than an all-or-none impact on thalamocortical transmission.


2017 ◽  
Vol 34 ◽  
Author(s):  
CHARLES L. COX ◽  
JOSEPH A. BEATTY

AbstractIntrinsic interneurons within the dorsal lateral geniculate nucleus (dLGN) provide a feed-forward inhibitory pathway for afferent visual information originating from the retina. These interneurons are unique because in addition to traditional axodendritic output onto thalamocortical neurons, these interneurons have presynaptic dendrites that form dendrodendritic synapses onto thalamocortical neurons as well. These presynaptic dendrites, termed F2 terminals, are tightly coupled to the retinogeniculate afferents that synapse onto thalamocortical relay neurons. Retinogeniculate stimulation of F2 terminals can occur through the activation of ionotropic and/or metabotropic glutamate receptors. The stimulation of ionotropic glutamate receptors can occur with single stimuli and produces a short-lasting inhibition of the thalamocortical neuron. By contrast, activation of metabotropic glutamate receptors requires tetanic activation and results in longer-lasting inhibition in the thalamocortical neuron. The F2 terminals are predominantly localized to the distal dendrites of interneurons, and the excitation and output of F2 terminals can occur independent of somatic activity within the interneuron thereby allowing these F2 terminals to serve as independent processors, giving rise to focal inhibition. By contrast, strong transient depolarizations at the soma can initiate a backpropagating calcium-mediated potential that invades the dendritic arbor activating F2 terminals and leading to a global form of inhibition. These distinct types of output, focal versus global, could play an important role in the temporal and spatial roles of inhibition that in turn impacts thalamocortical information processing.


2004 ◽  
Vol 48 (4) ◽  
pp. 387-396 ◽  
Author(s):  
Lourdes Vidal ◽  
Concepción Ruı́z ◽  
Alicia Villena ◽  
Florentina Dı́az ◽  
Ignacio Pérez de Vargas

2003 ◽  
Vol 90 (2) ◽  
pp. 1063-1070 ◽  
Author(s):  
Jokūbas Ziburkus ◽  
Fu-Sun Lo ◽  
William Guido

Using intracellular recordings in an isolated (in vitro) brain stem preparation, we examined the inhibitory postsynaptic responses of developing neurons in the dorsal lateral geniculate nucleus (LGN) of the rat. As early as postnatal day (P) 1–2, 31% of all excitatory postsynaptic (EPSP) activity evoked by electrical stimulation of the optic tract was followed by inhibitory postsynaptic potentials (IPSPs). By P5, 98% of all retinally evoked EPSPs were followed by IPSP activity. During the first postnatal week, IPSPs were mediated largely by GABAA receptors. Additional GABAB-mediated IPSPs emerged at P3–4 but were not prevalent until after the first postnatal week. Experiments involving the separate stimulation of each optic nerve indicated that developing LGN cells were binocularly innervated. At P11–14, it was common to evoke EPSP/IPSP pairs by stimulating either the contralateral or ipsilateral optic nerve. During the third postnatal week, binocular excitatory responses were encountered far less frequently. However, a number of cells still maintained a binocular inhibitory response. These results provide insight about the ontogeny and nature of postsynaptic inhibitory activity in the LGN during the period of retinogeniculate axon segregation.


1995 ◽  
Vol 12 (5) ◽  
pp. 971-983 ◽  
Author(s):  
A.J. Trevelyan ◽  
I.D. Thompson

AbstractWe have examined the effects of neonatal monocular enucleation on the volume of the dorsal lateral geniculate nucleus (dLGN), the area of area 17, and the size and numbers of geniculate relay neurons identified by retrograde transport of HRP from cortex. Compared to values for normal animals, the only significant change contralateral to the remaining eye was an increase in relay cell radius. The effects ipsilateral to the remaining eye were more widespread: we found significant reductions in the volume of the dLGN (27% reduction), the area of striate cortex (22%), and the number (16%) and average soma radius (6%) of geniculate relay neurons. The relay neurons were also more densely packed, suggesting that other geniculate cell types were affected similarly, although this was not explicitly examined. These changes were not uniform throughout the nucleus, and as such, reflected the changes in retinal input. The greatest reduction in cell size occurred in the region of the ipsilateral dLGN receiving the most sparse retinal input subsequent to enucleation. Nor was the shrinkage of the dLGN uniform, being most apparent in the coronal plane especially along the axis orthogonal to the pia; there appeared to be little change in the anteroposterior extent. Shrinkage in area 17 ipsilateral to the remaining eye was the same (about 22%) whether it was defined by myelin staining or transneuronal transport of WGA-HRP. These results show that the transneuronal changes seen in the organization of visual cortex after early monocular enucleation in rodents are associated with only a moderate loss of geniculate relay cells.


2000 ◽  
Vol 17 (2) ◽  
pp. 313-318 ◽  
Author(s):  
CHRISTIAN KOLMAC ◽  
JOHN MITROFANIS

We have examined the patterns of projections from different nuclei of the brain stem to the ventral lateral geniculate nucleus (vLGN) of the thalamus. Injections of biotinylated dextran were made into different nuclei of the brainstem (i.e., midbrain reticular nucleus, pontine reticular nucleus, deep layers of superior colliculus, periaqueductal grey matter [ventrolateral, dorsolateral, and lateral columns], pedunculopontine tegmental nucleus, parabrachial nucleus, lateral dorsal tegmental nucleus, substantia nigra [pars reticulata], locus coeruleus, and dorsal raphe) of Sprague-Dawley rats using stereotaxic coordinates. Our results show that all of the abovementioned brain-stem nuclei have overlapping projections to the medial regions of the vLGN, within the parvocellular lamina of the nucleus. This if the first instance of the parvocellular lamina being shown to receive a major set of projections. Very few labelled terminals from the brain stem were ever seen within the larger more lateral magnocellular lamina, which has been shown by previous studies to receive heavy inputs from visually associated structures, such as the retina and occipital cortex. Since many of the brain-stem nuclei injected in this study have little to do with visual processing, our results suggest that one can perhaps package the vLGN into distinct visual (magnocellular) and nonvisual (parvocellular) components.


Sign in / Sign up

Export Citation Format

Share Document