laterodorsal tegmental nucleus
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 6)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 65 (s1) ◽  
Author(s):  
Pilar Marcos ◽  
Rafael Coveñas

Several cholinergic regions have been detected in the brainstem of mammals. In general, these regions are constant among different species, and the nuclear complement is maintained in animals belonging to the same order. The cholinergic system of the brainstem has been partially described in Cetartiodactyla, except for the medulla oblongata. In this work carried out in the alpaca, the description of the cholinergic regions in this order is completed by the immunohistochemical detection of the enzyme choline acetyltransferase (ChAT). In addition, using double immunostaining techniques, the relationship between the cholinergic system and the distribution of calcitonin gene-related peptide (CGRP) previously described is analysed. Although these two substances are found in several brainstem regions, the coexistence in the same cell bodies was observed only in the laterodorsal tegmental nucleus, the nucleus ambiguus and the reticular formation. These results suggest that the interaction between ChAT and CGRP may be important in the regulation of voluntary movements, the control of rapid eye movement sleep and states of wakefulness as well as in reward mechanisms. Comparing the present results with others previously obtained by our group regarding the catecholaminergic system in the alpaca brainstem, it seems that CGRP may be more functionally related to the latter system than to the cholinergic system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Icnelia Huerta-Ocampo ◽  
Daniel Dautan ◽  
Nadine K. Gut ◽  
Bakhtawer Khan ◽  
Juan Mena-Segovia

AbstractThe cholinergic midbrain is involved in a wide range of motor and cognitive processes. Cholinergic neurons of the pedunculopontine (PPN) and laterodorsal tegmental nucleus (LDT) send long-ranging axonal projections that target sensorimotor and limbic areas in the thalamus, the dopaminergic midbrain and the striatal complex following a topographical gradient, where they influence a range of functions including attention, reinforcement learning and action-selection. Nevertheless, a comprehensive examination of the afferents to PPN and LDT cholinergic neurons is still lacking, partly due to the neurochemical heterogeneity of this region. Here we characterize the whole-brain input connectome to cholinergic neurons across distinct functional domains (i.e. PPN vs LDT) using conditional transsynaptic retrograde labeling in ChAT::Cre male and female rats. We reveal that input neurons are widely distributed throughout the brain but segregated into specific functional domains. Motor related areas innervate preferentially the PPN, whereas limbic related areas preferentially innervate the LDT. The quantification of input neurons revealed that both PPN and LDT receive similar substantial inputs from the superior colliculus and the output of the basal ganglia (i.e. substantia nigra pars reticulata). Notably, we found that PPN cholinergic neurons receive preferential inputs from basal ganglia structures, whereas LDT cholinergic neurons receive preferential inputs from limbic cortical areas. Our results provide the first characterization of inputs to PPN and LDT cholinergic neurons and highlight critical differences in the connectome among brain cholinergic systems thus supporting their differential roles in behavior.


2020 ◽  
Author(s):  
Icnelia Huerta-Ocampo ◽  
Daniel Dautan ◽  
Nadine K. Gut ◽  
Bakhtawer Khan ◽  
Juan Mena-Segovia

AbstractThe cholinergic midbrain is involved in a wide range of motor and cognitive processes. Cholinergic neurons of the pedunculopontine (PPN) and laterodorsal tegmental nucleus (LDT) send long-ranging axonal projections that target sensorimotor and limbic areas in the thalamus, the dopaminergic midbrain and the striatal complex following a topographical gradient, where they influence a range of functions including attention, reinforcement learning and action-selection. Nevertheless, a comprehensive examination of the afferents to PPN and LDT cholinergic neurons is still lacking, partly due to the neurochemical heterogeneity of this region. Here we characterize the whole-brain input connectome to cholinergic neurons across distinct functional domains (i.e. PPN vs LDT) using conditional transsynaptic retrograde labeling in ChAT::Cre male and female rats. The quantification of input neurons revealed that both PPN and LDT receive similar substantial inputs from the superior colliculus and the output of the basal ganglia (i.e. substantia nigra pars reticulata). In addition, we found that PPN cholinergic neurons receive preferential inputs from basal ganglia structures than from the cortex, whereas LDT cholinergic neurons receive preferential inputs from cortical areas. Our results provide the first characterization of inputs to PPN and LDT cholinergic neurons. The differences in afferents to each cholinergic structure support their differential roles in behavior.Significance statementAcetylcholine is a widespread neuromodulator that regulates a wide variety of functions including learning, goal-directed behavior and execution of movements. In this study we characterized the distribution of presynaptic neurons that modulate the activity of functionally distinct midbrain cholinergic neurons located in the pedunculopontine nucleus (PPN) and the laterodorsal tegmental nucleus (LDT) by using a transsynaptic, modified-rabies virus strategy. We reveal that input neurons are widely distributed throughout the brain but segregated into specific functional domains. Motor related areas innervate preferentially the PPN, whereas limbic related areas preferentially innervate the LDT. Our results suggest that input neurons located along distinct functional domains have differential impact over cholinergic midbrain regions.


2019 ◽  
Vol 527 (18) ◽  
pp. 3046-3072 ◽  
Author(s):  
Debora Bueno ◽  
Leandro B. Lima ◽  
Rudieri Souza ◽  
Luciano Gonçalves ◽  
Fernanda Leite ◽  
...  

2017 ◽  
Vol 1665 ◽  
pp. 74-79 ◽  
Author(s):  
Neeraj Soni ◽  
Bala Krishna Prabhala ◽  
Ved Mehta ◽  
Osman Mirza ◽  
Kristi Anne Kohlmeier

Sign in / Sign up

Export Citation Format

Share Document