Ensemble discharge from Golgi tendon organs of cat peroneus tertius muscle

1990 ◽  
Vol 64 (3) ◽  
pp. 813-821 ◽  
Author(s):  
G. Horcholle-Bossavit ◽  
L. Jami ◽  
J. Petit ◽  
R. Vejsada ◽  
D. Zytnicki

1. The responses of individual tendon organs of the cat peroneus tertius muscle to motor-unit contractions were recorded in anesthetized cats during experiments in which all the Ib-afferent fibers from the muscle had been prepared for recording in dorsal root filaments. This was possible because the cat peroneus tertius only contains a relatively small complement of approximately 10 tendon organs. 2. Motor units of different physiological types were tested for their effects on the whole population of tendon organs in the muscle. Effects of unfused tetanic contractions were tested under both isometric and anisometric conditions. Each motor unit activated at least one tendon organ, and each tendon organ was activated by at least one motor unit. Individual slow-type units were found to act on a single or two receptors, whereas a fast-type unit could activate up to six tendon organs. 3. In one experiment, the effects of 8 motor units on 10 tendon organs were examined. One fast-twitch, fatigue resistant (FR)-type unit acted on six tendon organs, of which four were also activated by another FR unit. The contraction of each unit, on its own, elicited a range of individual responses, from weak to strong. The discharge frequencies of individual responses displayed no clear relation with the strength of contraction, nor did they accurately represent the shape of force profiles. But when all the discharges were pooled, a fairly good correspondence appeared between variations of contractile force and variations of averaged discharge frequencies.(ABSTRACT TRUNCATED AT 250 WORDS)

1985 ◽  
Vol 54 (6) ◽  
pp. 1383-1395 ◽  
Author(s):  
J. E. Gregory ◽  
D. L. Morgan ◽  
U. Proske

A continuing controversy surrounds the question of whether Golgi tendon organs are examples of receptors in which impulses may be generated at more than one site. This paper reports a systematic examination of a number of models incorporating single or multiple impulse generators and of the compatibility of their predictions with experimental observations. Two phenomena, in particular, that must be accounted for are nonlinear summation and cross-adaptation. When two motor units each with a direct effect on the tendon organ are stimulated together, the rate of discharge is greater than either individual rate but is less than their sum. In cross-adaptation a conditioning response elicited by one motor unit contraction produces adaptation of the discharge associated with stimulation of a second motor unit. A model with a central impulse generator can be modified to account for nonlinear summation by postulating a nonlinear transformation in the generator current-to-impulse rate conversion. Experiments measuring summation of responses to stimulation of three inputs produced results that did not support this model. Another variation of the model, which had a nonlinearity in the tension-to-current step and cross-connections (mechanical or neural) between tendon strands stressed by contracting muscle fibers, was able to account for the observations. A second model that provided the right predictions was a multiple impulse generator with cross-connections. Which of the two models best fits the experimental observations can be decided by comparing the calculated summation coefficients and cross-adaptation coefficients. A central impulse generator predicts a negative correlation, the multiple impulse generator a positive correlation. All of the observations were made using tendon organs of cat soleus muscle. Responses were recorded to stimulation of filaments of ventral root. In a comparison between 20 pairs of responses from six tendon organs the correlation between summation and cross-adaptation coefficients was found to be significantly positive. We conclude that the tendon organ model that accurately predicts all of the experimental observations incorporates multiple generators.


1988 ◽  
Vol 59 (5) ◽  
pp. 1510-1523 ◽  
Author(s):  
G. Horcholle-Bossavit ◽  
L. Jami ◽  
J. Petit ◽  
R. Vejsada ◽  
D. Zytnicki

1. The discharges from individual Golgi tendon organs of peroneus tertius and brevis muscles were recorded in anesthetized cats. Responses to unfused isometric contractions of single motor units and combinations of motor units were compared with responses to contractions eliciting muscle shortening (i.e., shortening contractions). 2. In 75% of the examined instances, the effect of muscle shortening during unfused contractions was a slight decrease in tendon organ activation, in keeping with the reduction of contractile tension recorded at the muscle tendon. In other instances there was either no change in tendon organ response or, in less than 10% of instances, a slight increase For two motor units eliciting similar activation of a given tendon organ under isometric conditions, the effect of shortening contraction was not necessarily the same. 3. The reductions observed in tendon organ discharges upon muscle shortening were less than proportional to the reductions of contractile tension and difficult to correlate with the properties of motor units, as determined under isometric conditions. The present observations suggest three main reasons for this lack of relation. 4. The first reason depended on the properties of motor units, in that the relation between length changes and tension changes was not the same for all units. Two motor units developing similar isometric tensions did not necessarily produce the same degree of muscle shortening. Some units produced relatively significant shortening without much loss of tension. 5. Second, the dynamic sensitivity of tendon organs is known to exert a major influence on their responses to isometric unfused contractions, accounting for 1:1 driving of discharge during tension oscillations and high frequency bursts upon abrupt increase of tension. Although less tension was produced and the rate of tension development was slower in shortening contractions, similar manifestations of the dynamic sensitivity of tendon organs were observed. In such cases, the responses of tendon organs were the same whether or not the muscle shortened during contraction. 6. Third, when several motor units were stimulated in combination, the unloading influences of in-parallel units were facilitated by muscle shortening so that unloading effects, which were hardly visible under isometric conditions became evident during shortening contractions.


1990 ◽  
Vol 68 (5) ◽  
pp. 1917-1926 ◽  
Author(s):  
G. C. Sieck ◽  
M. Fournier

Fatigue-related changes in the waveform and root-mean-square (rms) values of evoked motor unit electromyographic (EMG) responses were studied in the right sternocostal region of the cat diaphragm. Motor units were isolated by microdissection and stimulation of C5 ventral root filaments and then classified as fast-twitch fatigable (FF), fast-twitch fatigue intermediate (FInt), fast-twitch fatigue resistant (FR), or slow-twitch (S) based on standard physiological criteria. The evoked EMG responses of S and FR units showed very little change during the fatigue test. The evoked EMG waveform and rms values of FF and FInt units displayed variable changes during the fatigue test. When changes were observed, they typically included a prolongation of the EMG waveform, a decrease in peak amplitude, and a decrease in rms value. The changes in EMG amplitude and rms values were not correlated. In more fatigable units, the decrease in force during the fatigue test generally exceeded the decrease in EMG rms values. Changes in the evoked force and EMG responses of multiple units innervated by C5 or C6 ventral roots were also examined during the fatigue test. The decrease in diaphragm force during the fatigue test closely matched the force decline predicted by the proportionate contribution of different motor unit types. However, the observed reduction in diaphragm EMG rms values during the fatigue test exceeded that predicted based on the aggregate contribution of different motor unit types. It was concluded that changes in EMG do not reflect the extent of diaphragm fatigue.


1975 ◽  
Vol 38 (5) ◽  
pp. 1217-1231 ◽  
Author(s):  
J. A. Stephens ◽  
R. M. Reinking ◽  
D. G. Stuart

The responses of 13 Golgi tendon organs to graded force development of 29 motor units in medial gastrocnemius of the cat have been studied in five experiments. Of the 13 tendon organs, 11 were responsive to passive stretch within the physiological range of muscle length and 5 were "spontaneously" active at very short lengths where no passive tension could be recorded. The relationship between passive force and the firing rates of the various afferents ranged from a linear one to a power relation (Y = Axb + c) with b, a widely varying exponent. Results support the general conclusion that although many Ib afferents respond to passive force within the physiological range of muscle stretch, this form of stimulus is not a particularly effective one. The statis responses of Golgi tendon organs to active force development produced by single motor units was studied at different muscle lengths. In all cases the apparent sensitivity (change in firing rate per active force developed) decreased as muscle length approached Lo. The static responses of Golgi tendon organs to force developed by single motor units were also studied during fatiguing contractions. The data suggest a sigmoid relationship between force developed at the tendon and the Ib response. The collective response of all 13 tendon organs to active and passive forces at different muscle lengths was also examined. This analysis offered further support for the viewpoint that active motor unit contractions provide themost significant excitatory input to tendon organs and that changes in passive force during muscle stretch have comparatively little effect on the collective tendon organ response. The interaction between active and passive force inputs to the Golgi tendon organs is discussed in relation to the complicated nature of the relationship between forces measured at the tendon and those acting within the receptor capsule. When these complications were taken into account it was possible to explain the differences in responsiveness of a given tendon organ to active contraction of several motor units and to passive force in terms of a single force-firing rate curve for the receptor. It is concluded that changes in the force of contraction of single motor units result in relatively small changes in Ib afferent firing and that during normal muscle contractions, changes in the number of motor units acting on a single receptor must produce far more significant changes in firing rate than changes in the amount of force developed by any single unit. Changes in dynamic Ib sensitivity to single motor unit contractions are also shown to depend on length and in a similar way to the changes in static Ib sensitivity. During fatiguing contractions, a sigmoid relation was found between the dynamic Ib response and the rate of force development by single motor units.


1986 ◽  
Vol 375 (1) ◽  
pp. 157-162 ◽  
Author(s):  
E.K. Stauffer ◽  
R.A. Auriemma ◽  
G.P. Moore

1986 ◽  
Vol 55 (5) ◽  
pp. 947-965 ◽  
Author(s):  
R. C. Foehring ◽  
G. W. Sypert ◽  
J. B. Munson

This study tested the hypothesis that functional connection to muscle is necessary for expression of normal motoneuron electrical properties. Also examined was the time course of self-reinnervation. Properties of individual medial gastrocnemius (MG) motor units were examined following section and reanastomosis of the MG nerve. Stages examined were 3-5 wk (prior to reinnervation, no-re), 5-6 wk (low-re), 9-10 wk (med-re), and 9 mo (long-re, preceding paper) after nerve section. Motor units were classified on the basis of their mechanical response as type fast twitch, fast fatiguing (FF), fast twitch with intermediate fatigue resistance (FI), fast twitch, fatigue resistant (FR), or slow twitch, fatigue resistant (S) (11, 24). Motoneuron electrical properties were measured. Muscle fibers were classified using histochemical methods as type fast glycolytic (FG), fast oxidative glycolytic (FOG), or slow oxidative (SO) (60). Prior to functional reinnervation, MG motoneurons exhibited increased input resistance, decreased rheobase, decreased rheobase/input resistance, and decreased axonal conduction velocity. There was no change in mean afterhyperpolarization (AHP) half-decay time. Normal relationships between motoneuron electrical properties were lost. These data are consistent with dedifferentiation of motoneuron properties following axotomy (35, 47). At 5-6 wk after reanastomosis, motor-unit tensions were small, and motoneuron membrane electrical properties were unchanged from the no-re stage. There were no differences in motoneuron electrical properties between cells that elicited muscle contraction and those that did not. Motor-unit types were first recognizable at the med-re stage. The proportions of fast and slow motor units were similar to normal MG. Within the fast units, there were fewer type-FF units and more type-FI and type-FR units than normal, reflecting a general increase in fatigue resistance at this stage. Neither motoneuron membrane electrical properties nor muscle contractile properties had reached normal values, although both were changed in that direction from the low-re stage. Normal relationships between muscle properties, between motoneuron properties, and between motoneuron and muscle properties were re-established. The correspondence between motor-unit type and motoneuron type was similar to normal or 9 mo reinnervated MG. Muscle-unit tetanic tensions became larger with time after reinnervation. Most of the increase in muscle tension beyond the med-re stage could be accounted for by increase in muscle fiber area. There was an increased proportion of SO muscle fibers observed in the med-re muscles, as at the long-re stage.(ABSTRACT TRUNCATED AT 400 WORDS)


1989 ◽  
Vol 103 (1) ◽  
pp. 44-49 ◽  
Author(s):  
G. Horcholle-Bossavit ◽  
L. Jami ◽  
J. Petit ◽  
R. Vejsada ◽  
D. Zytnicki

1999 ◽  
Vol 354 (1385) ◽  
pp. 917-925 ◽  
Author(s):  
A. J. Sokoloff ◽  
G. E. Goslow

The M. pectoralis (pars thoracicus) of pigeons ( Columba livia ) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap ‘in-series’. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (±s.d.) 10.74±0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ±3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.


1996 ◽  
Vol 75 (1) ◽  
pp. 38-50 ◽  
Author(s):  
K. E. Tansey ◽  
B. R. Botterman

1. The aim of this study was to examine the nature of motoneuron firing-rate modulation in type-identified motor units during smoothly graded contractions of the cat medial gastrocnemius (MG) muscle evoked by stimulation of the mesencephalic locomotor region (MLR). Motoneuron discharge patterns, firing rates, and the extent of firing-rate modulation in individual units were studied, as was the extent of concomitant changes in firing rates within pairs of simultaneously active units. 2. In 21 pairs of simultaneously active motor units, studied during 41 evoked contractions, the motoneurons' discharge rates and patterns were measured by processing the cells' recorded action potentials through windowing devices and storing their timing in computer memory. Once recruited, most motoneurons increased their firing rates over a limited range of increasing muscle tension and then maintained a fairly constant firing rate as muscle force continued to rise. Most motoneurons also decreased their firing rates over a slightly larger, but still limited, range of declining muscle force before they were derecruited. Although this was the most common discharge pattern recorded, several other interesting patterns were also seen. 3. The mean firing rate for slow twitch (type S) motor units (27.8 imp/s, 5,092 activations) was found to be significantly different from the mean firing rate for fast twitch (type F) motor units (48.4 imp/s, 11,272 activations; Student's t-test, P < 0.001). There was no significant difference between the mean firing rates of fast twitch, fatigue-resistant (type FR) and fast twitch, fatigable (type FF) motor units. When the relationship between motoneuron firing rate and whole-muscle force was analyzed, it was noted that, in general, smaller, lower threshold motor units began firing at lower rates and reached lower peak firing rates than did larger, higher threshold motor units. These results confirm both earlier experimental observations and predictions made by other investigators on the basis of computer simulations of the cat MG motor pool, but are in contrast to motor-unit discharge behavior recorded in some human motor-unit studies. 4. The extent of concomitant changes in firing rate within pairs of simultaneously active motor units was examined to estimate the extent of simultaneous motoneuron firing-rate modulation across the motoneuron pool. A smoothed (5 point sliding average) version of the two motoneurons' instantaneous firing rates was plotted against each other, and the slope and statistical significance of the relationship was determined. In 16 motor-unit pairs, the slope of the motoneurons' firing-rate relationship was significantly distinct from 0. Parallel firing-rate modulation (< 10-fold difference in firing rate change reflected by a slope of > 0.1) was noted only in pairs containing motor units of like physiological type and then only if they were of similar recruitment threshold. 5. Other investigators have demonstrated that changes in a motoneuron's "steady-state" firing rate predictably reflect changes in the amount of effective synaptic current that cell is receiving. The finding in the present study of limited parallel firing-rate modulation between simultaneously active motoneurons would suggest that changes in the synaptic drive to the various motoneurons of the pool is unevenly distributed. This finding, in addition to the findings of orderly motor-unit recruitment and the relationship between motor-unit recruitment threshold and motoneuron firing rate, cannot be adequately accommodated for by the existing models of the synaptic organization in motoneuron pools. Therefore a new model of the synaptic organization within the motoneuron pool has been proposed.


Sign in / Sign up

Export Citation Format

Share Document