Differential modulation of single voltage-gated calcium channels by cholinergic and adrenergic agonists in adult hippocampal neurons

1990 ◽  
Vol 64 (4) ◽  
pp. 1291-1302 ◽  
Author(s):  
R. Fisher ◽  
D. Johnston

1. Pharmacologic agents known to modulate long-term potentiation (LTP) at the mossy fiber-to-CA3 pyramidal neuron synapse were tested for their effects on the activity of single voltage-gated calcium channels in adult CA3 pyramidal neurons. 2. Single-channel current recordings of three types of voltage-gated calcium channels were made from acutely exposed CA3 pyramidal neurons of the adult guinea pig hippocampus. 3. The beta-adrenergic agonist isoproterenol (10 microM), which is known to enhance LTP, increased the activity of the two high-threshold calcium channels (N and L) with no striking effect on the low-threshold (T) channel. 4. The muscarinic agonists carbachol and muscarine (1-10 microM), the latter of which has been shown to inhibit LTP, decreased the probability of opening of L channels, increased the probability of opening of T channels, and had no effect on N channels. The effects were blocked by 0.1 microM atropine. 5. These results are consistent with the hypothesis that neuromodulation of mossy fiber LTP occurs, at least in part, through the modulation of postsynaptic, voltage-gated calcium channels.

1990 ◽  
Vol 64 (1) ◽  
pp. 91-104 ◽  
Author(s):  
R. E. Fisher ◽  
R. Gray ◽  
D. Johnston

1. The properties of single voltage-gated calcium channels were investigated in acutely exposed CA3 and CA1 pyramidal neurons and granule cells of area dentata in the adult guinea pig hippocampal formation. 2. Guinea pig hippocampal slices were prepared in a conventional manner, then treated with proteolytic enzymes and gently shaken to expose the somata of the three cell types studied. Standard patch-clamp techniques were used to record current flow through calcium channels in cell-attached membrane patches with isotonic barium as the charge carrier. 3. Single-channel current amplitudes were measured at different membrane potentials. Single-channel current-voltage plots were constructed and single-channel slope conductances were found to fall into three classes. These were (approximately) 8, 14, and 25 pS, and were observed in all three cell types. 4. The three groups of channels differed from each other in voltage dependence of activation: from a holding potential of -80, the small-conductance channel began to activate at about -40 to -30 mV, the medium-conductance channel at about -20 mV, and the large-conductance channel at approximately 0 mV. 5. Ensemble averages of single-channel currents during voltage steps revealed differences in voltage-dependent inactivation. The small-conductance channel inactivated completely within approximately 50 ms during steps from -80 to -10 mV or more positive. Steps to less positive potentials resulted in less inactivation. The medium-conductance channel displayed variable inactivation during steps from -80 to 0 mV. Inactivation of this channel during a 160-ms step ranged from virtually zero to approximately 100%. The large-conductance channel displayed no significant inactivation during steps as long as 400 ms. 6. The large-conductance channel was strikingly affected by the dihydropyridine agonist Bay K8644 (0.5-2.0 microM), resulting in a high probability of channel opening, prolonged openings, and an apparent increase in the number of channels available for activation. The medium and small-conductance channels were not noticeably affected by the drug. 7. The large-conductance channel could be induced to open at very negative membrane potentials by holding the patch for several seconds at 20 or 30 mV and stepping to -30 or -40 mV. This process was enhanced by Bay K8644, resulting in prolonged openings at potentials as negative as -100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 79 (4) ◽  
pp. 2181-2190 ◽  
Author(s):  
Ajay Kapur ◽  
Mark F. Yeckel ◽  
Richard Gray ◽  
Daniel Johnston

Kapur, Ajay, Mark F. Yeckel, Richard Gray, and Daniel Johnston. L-type calcium channels are required for one form of hippocampal mossy fiber LTP. J. Neurophysiol. 79: 2181–2190, 1998. The requirement of postsynaptic calcium influx via L-type channels for the induction of long-term potentiation (LTP) of mossy fiber input to CA3 pyramidal neurons was tested for two different patterns of stimulation. Two types of LTP-inducing stimuli were used based on the suggestion that one of them, brief high-frequency stimulation (B-HFS), induces LTP postsynaptically, whereas the other pattern, long high-frequency stimulation (L-HFS), induces mossy fiber LTP presynaptically. To test whether or not calcium influx into CA3 pyramidal neurons is necessary for LTP induced by either pattern of stimulation, nimodipine, a L-type calcium channel antagonist, was added during stimulation. In these experiments nimodipine blocked the induction of mossy fiber LTP when B-HFS was given [34 ± 5% (mean ± SE) increase in control versus 7 ± 4% in nimodipine, P < 0.003]; in contrast, nimodipine did not block the induction of LTP with L-HFS (107 ± 10% in control vs. 80 ± 9% in nimodipine, P > 0.05). Administration of nimodipine after the induction of LTP had no effect on the expression of LTP. In addition, B- and L-HFS delivered directly to commissural/associational fibers in stratum radiatum failed to induce a N-methyl-d-aspartate-independent form of LTP, obviating the possibility that the presumed mossy fiber LTP resulted from potentiation of other synapses. Nimodipine had no effect on calcium transients recorded from mossy fiber presynaptic terminals evoked with the B-HFS paradigm but reduced postsynaptic calcium transients. Our results support the hypothesis that induction of mossy fiber LTP by B-HFS is mediated postsynaptically and requires entry of calcium through L-type channels into CA3 neurons.


2012 ◽  
Vol 33 (4) ◽  
pp. 438-444 ◽  
Author(s):  
Zhi-ying Lin ◽  
Li-min Chen ◽  
Jing Zhang ◽  
Xiao-dong Pan ◽  
Yuan-gui Zhu ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10342
Author(s):  
Denis P. Laryushkin ◽  
Sergei A. Maiorov ◽  
Valery P. Zinchenko ◽  
Sergei G. Gaidin ◽  
Artem M. Kosenkov

Epileptic discharges manifest in individual neurons as abnormal membrane potential fluctuations called paroxysmal depolarization shift (PDS). PDSs can combine into clusters that are accompanied by synchronous oscillations of the intracellular Ca2+ concentration ([Ca2+]i) in neurons. Here, we investigate the contribution of L-type voltage-gated calcium channels (VGCC) to epileptiform activity induced in cultured hippocampal neurons by GABA(A)R antagonist, bicuculline. Using KCl-induced depolarization, we determined the optimal effective doses of the blockers. Dihydropyridines (nifedipine and isradipine) at concentrations ≤ 10 μM demonstrate greater selectivity than the blockers from other groups (phenylalkylamines and benzothiazepines). However, high doses of dihydropyridines evoke an irreversible increase in [Ca2+]i in neurons and astrocytes. In turn, verapamil and diltiazem selectively block L-type VGCC in the range of 1–10 μM, whereas high doses of these drugs block other types of VGCC. We show that L-type VGCC blockade decreases the half-width and amplitude of bicuculline-induced [Ca2+]i oscillations. We also observe a decrease in the number of PDSs in a cluster and cluster duration. However, the pattern of individual PDSs and the frequency of the cluster occurrence change insignificantly. Thus, our results demonstrate that L-type VGCC contributes to maintaining the required [Ca2+]i level during oscillations, which appears to determine the number of PDSs in the cluster.


1997 ◽  
Vol 78 (5) ◽  
pp. 2574-2581 ◽  
Author(s):  
Yue Wang ◽  
Michael J. Rowan ◽  
Roger Anwyl

Wang, Yue, Michael J. Rowan, and Roger Anwyl. LTP induction dependent on activation of Ni2+-sensitive voltage-gated calcium channels, but not NMDA receptors, in the rat dentate gyrus in vitro. J. Neurophysiol. 78: 2574–2581, 1997. A N-methyl-d-aspartate receptor (NMDAR)-independent long-term potentiation (LTP) has been investigated in the dentate gyrus of the hippocampus in vitro in the presence of the NMDAR antagonist, d-2-amino-phosphonopentanoate (50–100 μM), at a concentration thatcompletely blocked NMDAR-mediated excitatory postsynaptic currents (EPSCs). LTP of patch-clamped EPSCs was induced by pairing low-frequency evoked EPSCs (1 Hz) with depolarizing voltage pulses designed to predominately open low-voltage–activated (LVA) Ca2+ channels. Voltage pulses alone induced only a short-term potentiation. The LTP was blocked by intracellular application of the rapid Ca2+ chelator bis-( o-aminophenoxy)- N,N,N′,N′-tetraacetic acid, demonstrating that a rise in intracellular Ca2+ is required for the NMDAR-independent LTP induction. The NMDAR-independent LTP induction also was blocked by Ni2+ at a low extracellular concentration (50 μM), which is known to strongly block LVA Ca2+ channels. However, Ni2+ did not inhibit the NMDAR-dependent LTP induced by high-frequency stimulation (HFS). The NMDAR-independent LTP induction was not blocked by high concentrations of the L-type Ca2+ channel blocker nifedipine (10 μM). The NMDAR-independent LTP was inhibited by the metabotropic glutamate receptor ligand (+)-α-methyl-4-carboxyphenylglycine. These experiments demonstrate the presence of a NMDAR-independent LTP induced by Ca2+ influx via Ni2+-sensitive, nifedipine-insensitive voltage-gated Ca2+ channels, probably LVA Ca2+ channels. Induction of the NMDAR-independent LTP was inhibited by prior induction of HFS-induced NMDAR-dependent LTP, demonstrating that although the NMDAR-dependent and NMDAR-independent LTP use a different Ca2+ channel for Ca2+ influx, they share a common intracellular pathway.


2004 ◽  
Vol 91 (4) ◽  
pp. 1596-1607 ◽  
Author(s):  
Jun Wang ◽  
Mark F. Yeckel ◽  
Daniel Johnston ◽  
Robert S. Zucker

The induction of mossy fiber-CA3 long-term potentiation (LTP) and depression (LTD) has been variously described as being dependent on either pre- or postsynaptic factors. Some of the postsynaptic factors for LTP induction include ephrin-B receptor tyrosine kinases and a rise in postsynaptic Ca2+ ([Ca2+]i). Ca2+ is also believed to be involved in the induction of the various forms of LTD at this synapse. We used photolysis of caged Ca2+ compounds to test whether a postsynaptic rise in [Ca2+]i is sufficient to induce changes in synaptic transmission at mossy fiber synapses onto rat hippocampal CA3 pyramidal neurons. We were able to elevate postsynaptic [Ca2+]i to approximately 1 μm for a few seconds in pyramidal cell somata and dendrites. We estimate that CA3 pyramidal neurons have approximately fivefold greater endogenous Ca2+ buffer capacity than CA1 neurons, limiting the rise in [Ca2+]i achievable by photolysis. This [Ca2+]i rise induced either a potentiation or a depression at mossy fiber synapses in different preparations. Neither the potentiation nor the depression was accompanied by consistent changes in paired-pulse facilitation, suggesting that these forms of plasticity may be distinct from synaptically induced LTP and LTD at this synapse. Our results are consistent with a postsynaptic locus for the induction of at least some forms of synaptic plasticity at mossy fiber synapses.


Sign in / Sign up

Export Citation Format

Share Document