Generation and propagation of epileptiform discharges in a combined entorhinal cortex/hippocampal slice

1993 ◽  
Vol 70 (5) ◽  
pp. 1962-1974 ◽  
Author(s):  
A. Rafiq ◽  
R. J. DeLorenzo ◽  
D. A. Coulter

1. The development of epileptiform discharges in response to tetanic stimulation of the Schaeffer collaterals was studied by using extracellular field potential recordings in CA1, CA3, dentate gyrus, and entorhinal cortex and intracellular recordings in CA1 neurons in rat hippocampal-parahippocampal slices, which were cut so as to maintain reciprocal connections between entorhinal cortex and hippocampus in vitro. 2. The first type of epileptiform discharge to develop was an immediate afterdischarge, which grew in duration and amplitude with repeated stimulation trains at 10-min intervals, until it plateaued after five to nine trains at 40-s duration, on average. This afterdischarge, when fully developed, consisted of an early, high frequency tonic component, followed by a later, lower frequency clonic component. Fully developed primary afterdischarges were all-or-none, in that they had a definite threshold, and varied little in amplitude or duration when activated by threshold or suprathreshold stimulation. The primary discharge could be recorded simultaneously throughout the hippocampal-parahippocampal slice, providing evidence for the intact reciprocal connections between hippocampus and entorhinal cortex. Intracellular recordings in CA1 neurons revealed that during the tonic phase of the afterdischarge, neurons were depolarized by 15-30 mV and gradually repolarized during the clonic component. 3. After full development of the primary afterdischarge, a delayed secondary epileptiform discharge began to appear after five to nine stimulation trains. This late discharge began 2-5 min after the stimulation train and progressed in amplitude and duration with repeated stimulation, in some cases to 2-3 h long self-sustained epileptiform discharges. Like the primary afterdischarge, the secondary discharge could be recorded simultaneously throughout the hippocampal-parahippocampal slice, and individual bursts comprising the secondary discharge occurred at earliest latency in the dentate gyrus, followed by activation in CA3, CA1, and finally in the entorhinal cortex. Intracellular recordings in CA1 neurons established that the secondary discharge occurred without an accompanying depolarization. Rather, it appeared as synaptic bursts developing in an escalating frequency barrage, initiated 2-5 min after the primary afterdischarge. 4. Lesioning studies were conducted to begin determining the site of origin of the secondary epileptiform discharge. After appearance of the secondary discharge, the mossy fibers were cut. This lesion abolished the secondary discharge but did not block the primary afterdischarge. Moving the stimulating electrodes from the Schaeffer collaterals to the mossy fibers proximal to the cut reestablished a truncated secondary discharge. In a second lesioning experiment, a cut was made through the subicular region of the hippocampal-parahippocampal slice before the onset of stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)

1998 ◽  
Vol 79 (4) ◽  
pp. 1726-1732 ◽  
Author(s):  
J. Behr ◽  
K. J. Lyson ◽  
I. Mody

Behr, J., K. J. Lyson, and I. Mody. Enhanced propagation of epileptiform activity through the kindled dentate gyrus. J. Neurophysiol. 79: 1726–1732, 1998. Extracellular recordings were performed in combined hippocampal-entorhinal cortex (HC-EC) slices obtained from control and commissural kindled rats to investigate the propagation of epileptiform activity from the entorhinal cortex (EC) to the hippocampus (HC) after chronic epilepsy. Lowering extracellular Mg2+ concentration in control slices induced epileptiform activity consisting of spontaneous epileptiform bursts in area CA3 and of electrographic seizures in the EC. In contrast, the CA3 region of HC-EC slices obtained from kindled rats displayed significantly longer lasting epileptiform bursts and electrographic seizures. The electrographic seizures that were absent in controls propagated from the EC because disconnecting the HC from the EC stopped their occurrence in the CA3, whereas epileptiform bursts persisted with an unaltered pattern and frequency. Thus the area CA3 is affected by kindling and contributes to the spread of epileptiform activity within the EC-HC complex. We developed a method to induce focal epileptiform activity in the EC by locally perfusing the γ-aminobutyric acid-A (GABA) antagonist bicuculline (50 mM) in 10 mM KCl containing artificial cerebrospinal fluid. This method enabled us to investigate the propagation of epileptiform discharges from the disinhibited EC to the DG without affecting the DG with the epileptogenic medium. We show here that kindling facilitates the propagation of epileptiform activity through the DG. These data are consistent with the normal function of the DG as a filter limiting the spread of epileptiform activity within the HC-EC complex. This gating mechanism breaks down after chronic epilepsy induced by kindling.


2000 ◽  
Vol 83 (3) ◽  
pp. 1115-1124 ◽  
Author(s):  
Michaela Barbarosie ◽  
Jacques Louvel ◽  
Irène Kurcewicz ◽  
Massimo Avoli

We have investigated the propagation of epileptiform discharges induced by 4-aminopyridine (4-AP, 50 μM) in adult mouse hippocampus-entorhinal cortex slices, before and after Schaffer collateral cut. 4-AP application induced 1) ictal epileptiform activity that disappeared over time and 2) interictal epileptiform discharges, which continued throughout the experiment. Using simultaneous field potential and [K+]orecordings, we found that entorhinal and dentate ictal epileptiform discharges were accompanied by comparable elevations in [K+]o (up to 12 mM from a baseline value of 3.2 mM), whereas smaller rises in [K+]o (up to 6 mM) were associated with ictal activity in CA3. Cutting the Schaffer collaterals disclosed the occurrence of ictal discharges that were associated with larger rises in [K+]o as compared with the intact slice. Further lesion of the perforant path blocked ictal activity and the associated [K+]o increases in the dentate gyrus, indicating synaptic propagation to this area. Time delay measurements demonstrated that ictal epileptiform activity in the intact hippocampal-entorhinal cortex slice propagated via the trisynaptic path. However, after Schaffer collateral cut, ictal discharges continued to occur in CA1 and subiculum and spread to these areas directly from the entorhinal cortex. Thus our data indicate that the increased epileptogenicity of the dentate gyrus (a prominent feature of temporal lobe epilepsy as well), may depend on perforant path propagation of entorhinal ictal discharges, irrespective of mossy fiber reorganization. Moreover, hippocampal neuronal damage that is acutely mimicked in our model by Schaffer collateral cut, may contribute to “short-circuit” propagation of activity by pathways that are masked when the hippocampus is intact.


2000 ◽  
Vol 20 (10) ◽  
pp. 1437-1445 ◽  
Author(s):  
Hiroyuki Nishimura ◽  
Tomohiro Matsuyama ◽  
Kyoko Obata ◽  
Yatsuka Nakajima ◽  
Hideto Kitano ◽  
...  

Mints (munc18-interacting proteins) are novel multimodular adapter proteins in membrane transport and organization. Mint1, a neuronal isoform, is involved in synaptic vesicle exocytosis. Its potential effects on development of ischemic damage to neurons have not yet been evaluated. The authors examined changes in mint1 and other synaptic proteins by immunohistochemistry after transient global ischemia in mouse hippocampus. In sham-ischemic mice, immunoreactivity for mint1 was rich in fibers projecting from the entorhinal cortex to the hippocampus and in the mossy fibers linking the granule cells of the dentate gyrus to CA3 pyramidal neurons. Munc18-1, a binding partner of mint1, was distributed uniformly throughout the hippocampus, and synaptophysin 2, a synaptic vesicle protein, was localized mainly in mossy fibers. After transient global ischemia, mint1 immunoreactivity in mossy fibers was dramatically decreased at 1 day of reperfusion but actually showed enhancement at 3 days. However, munc18-1 and synaptophysin 2 were substantially expressed in the same region throughout the reperfusion period. These findings suggest that mint1 participates in neuronal transmission along the excitatory pathway linking the entorhinal cortex to CA3 in the hippocampus. Because mint1 was transiently decreased in the mossy fiber projection after ischemia, functional impairment of neuronal transmission in the projection from the dentate gyrus to CA3 pyramidal neurons might be involved in delayed neuronal death.


1995 ◽  
Vol 74 (5) ◽  
pp. 2028-2042 ◽  
Author(s):  
A. Rafiq ◽  
Y. F. Zhang ◽  
R. J. DeLorenzo ◽  
D. A. Coulter

1. Combined hippocampal-parahippocampal slices were employed to study the development of complex epileptiform discharges after Schaeffer collateral stimulation in vitro. With repeated stimulation, slices generated several different types of epileptiform discharges, which were temporally linked to the preceding stimulus, and predictable in their progression. The first epileptiform discharge to be elicited by stimulation was a primary afterdischarge, which began immediately after the stimulation train and progressed with repeated stimulation until it had peaked in amplitude and duration by the third to fifth stimulus train. After development of the primary afterdischarge, a secondary afterdischarge began to appear, with a 2- to 5-min latency after the third to sixth stimulation train, and progressed in amplitude and duration with repeated stimulation, sometimes to durations > 30 min. 2. After development of the secondary afterdischarge, 65-70% of rostral slices triggered long-duration, spontaneous self-sustained activity. This activity consisted of repeated spontaneous 3- to 5-min duration ictallike discharges with a short interval (< 15 min between events), lasting for hours in many cases. These discharges were similar to activity seen in depth recordings of patients with complex partial status epilepticus. This cyclic spontaneous epileptiform activity was blocked by diazepam (100 nM to 1 microM), and potentiated by the N-methyl-D-aspartate (NMDA) antagonist 2-amino-5-phosphonovaleric acid (APV, 50 microM). Analysis of the temporal progression of epileptiform activity through multiple channel extracellular recordings demonstrated that both the interictal and ictal discharges evident during spontaneous recurrent ictal-like status epilepticus (SE) originated at a site distant from the stimulation locus, and then propagated to area CA1. 3. Intracellular recordings from CA3 neurons during spontaneous recurrent ictallike SE activity revealed the cellular correlates of this activity. Recurrent ictallike discharges were initiated at a cellular level by a large depolarization, accompanied by tonic action-potential firing. As the ictal event progressed, the neuron continued to depolarize, and a period of depolarization block ensued, which was terminated by the gradual repolarization of the neuron, with accompanying phasic burst firing. 4. A second variety of long-duration self-sustained activity was also seen in 5-10% of slices. This type of continuous sustained activity was initiated by an increase in duration of the secondary afterdischarge to 30-120 min duration with repeated stimulation. These sustained discharges were also increased in amplitude and frequency by APV (50 microM) and reduced or blocked by the benzodiazepines diazepam or clonazepam (1 microM). Sustained epileptiform discharges seen in vitro were similar to one form of seizure discharges seen in patients with SE in their frequency, duration, in their progression through a similar electrographic series of stages, and their sensitivity to benzodiazepines. 5. Intracellular recordings from CA3 neurons during continuous SE-like discharges revealed large bursts within this area during generation of generalized epileptiform activity. These bursts were coincident with extracellularly recorded population burst activity in CA1, and so were a circuit phenomenon. 6. This physiological and pharmacological correspondence between the multiple types of SE-like activity seen in vitro and in patients with SE suggests that these long-duration limbic discharges seen in slices may constitute a valuable model for study of the seizure discharges of SE. Future studies exploiting the advantages of in vitro preparations may aid in understanding physiological and pharmacological factors important in generation and control of this grave neurological condition.


1990 ◽  
Vol 64 (4) ◽  
pp. 1077-1088 ◽  
Author(s):  
P. A. Rutecki ◽  
F. J. Lebeda ◽  
D. Johnston

1. The epileptiform discharges in the CA3 region of the rat hippocampal slice produced by bath application of the potassium channel blocker tetraethylammonium (TEA) were investigated. The effects of a convulsant (5 mM) and subconvulsant (0.5 mM) concentration of TEA on the mossy fiber-evoked synaptic currents were studied by the use of voltage-clamp techniques to determine whether TEA, like 4-aminopyridine (4-AP), another potassium channel blocker and convulsant, increased both inhibitory and excitatory components of the synaptic response. 2. At extracellular potassium concentrations of 2.5 mM, TEA (5 mM) was found to produce spontaneously occurring epileptiform discharges that could be recorded extracellularly. The intracellular correlate of the epileptiform discharge, the paroxysmal depolarizing shift (PDS), could be reversed in polarity by depolarizing the membrane and was associated with a large increase in membrane conductance. These results suggest that a synaptically mediated potential underlies the generation of the epileptiform discharge. 3. The reversal potential for the PDS was dependent on the time, relative to the extracellularly recorded field discharge, at which the measurement was made. In current clamp the mean reversal potential of the PDS measured at the midpoint of the extracellular discharge was -3.3 +/- 2.9 (SE) mV (n = 9). The reversal potential of the PDS was considerably more negative when measured either before or after the midpoint of the extracellular discharge, suggesting the presence of an inhibitory synaptic component. In voltage clamp similar results were obtained and a large conductance change was found to be associated with the PDS. These results suggest that the synaptic conductance associated with the PDS has both inhibitory and excitatory components. 4. TEA increased significantly the mossy fiber-evoked, early-inhibitory conductance. A convulsant concentration (5 mM) increased the conductance measured 15 ms after the stimulus from 39.7 +/- 8.7 to 87.2 +/- 8.0 nS (n = 6). The reversal potential associated with the conductance depolarized from -68.3 +/- 3.4 to -58.3 +/- 4.0 mV after 5 mM TEA. A subconvulsant concentration of TEA (0.5 mM) also increased the conductance of the mossy fiber-evoked response at 15 ms after the stimulus from 49.5 +/- 3.1 to 63.1 +/- 6.1 nS (n = 4) without an associated shift in reversal potential. 5. The late-inhibitory component of the mossy fiber-evoked response, when present, was increased by 5 mM TEA and unchanged by 0.5 mM TEA. 6. The excitatory mossy fiber-evoked synaptic current was studied in the presence of picrotoxin and was found to be increased and prolonged by 5 mM TEA.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document