Wide-field nondirectional visual units in the pretectum: do they suppress ocular following of saccade-induced visual stimulation

1994 ◽  
Vol 72 (3) ◽  
pp. 1448-1450 ◽  
Author(s):  
M. R. Ibbotson ◽  
R. F. Mark

1. Direction-selective neurons in the nucleus of the optic tract (NOT) provide motion signals for controlling ocular following responses. When stimulated at low temporal and high spatial frequencies of motion (slow speeds), these retinal-slip neurons produce directional responses. When stimulated by motion at high temporal and low spatial frequencies (the visual conditions during saccades) the spontaneous activities of the neurons are inhibited by motion in all directions. A second class of neurons in, or near, the NOT have large receptive fields, are nondirectional, and are tuned to detect the same spatial and temporal stimuli that induce nondirectional inhibition in the retinal-slip neurons. We suggest that the nondirectional cells provide an inhibitory input for the retinal-slip neurons and therefore prevent ocular following of the visual displacements that accompany saccades.

1994 ◽  
Vol 72 (1) ◽  
pp. 1-a-1-a
Author(s):  
M. R. Ibbotson ◽  
R. F. Mark

Pages 1448–1450: M. R. Ibbotson and R. F. Mark, “Wide-field nondirectional visual units in the pretectum: do they suppress ocular following of saccade-induced visual stimulation.” Page 1450, right column, preceding references, the following dates should be inserted: Received 6 April 1994; accepted in final form 10 May 1994.


1994 ◽  
Vol 72 (4) ◽  
pp. 1-1
Author(s):  
M. R. Ibbotson ◽  
R. F. Mark

Pages 1448–1450: M. R. Ibbotson and R. F. Mark, “Wide-field nondirectional visual units in the pretectum: do they suppress ocular following of saccade-induced visual stimulation.” Page 1450, right column, preceding references, the following dates should be inserted: Received 6 April 1994; accepted in final form 10 May 1994.


1994 ◽  
Vol 72 (6) ◽  
pp. 2927-2943 ◽  
Author(s):  
M. R. Ibbotson ◽  
R. F. Mark ◽  
T. L. Maddess

1. The spatial and temporal response characteristics of direction-selective neurons in the nucleus of the optic tract and dorsal terminal nucleus of the accessory optic system (NOT-DTN) of the wallaby were established using moving sinusoidal gratings. This is the first comprehensive investigation of the spatiotemporal response characteristics of NOT-DTN neurons in any species. 2. The analysis revealed two main classes of cells. The first class, referred to as slow neurons, are maximally sensitive to motion at low temporal frequencies (< 1 Hz) and high spatial frequencies (0.5-1.0 cpd). The second class, referred to as fast neurons, are most sensitive to motion at high temporal frequencies (> 10 Hz) and moderate to low spatial frequencies (0.1-0.5 cpd). The fast neurons also have a domain of high sensitivity at low temporal frequencies and high spatial frequencies. As the neurons are tuned to specific temporal frequencies of motion, rather than image velocities, it is suggested that the motion detectors are of the delay-and-compare type and code local motion-related changes in contrast or luminance. 3. Both classes of neuron are highly direction-selective in the midranges of their spatiotemporal tuning curves, i.e., the firing rates increase during motion in the preferred direction (temporonasal movement through the visual field of the contralateral eye) and decrease during motion in the opposite direction. At high temporal and low spatial frequencies, however, the slow neurons are inhibited by motion in both directions along their preferred axis. It is argued that this bidirectional inhibition at high speeds may act to inhibit ocular following during saccades and may act as a gain control mechanism preventing excessive overshoot in eye velocity at motion onset, when retinal-slip velocities are high. 4. The fast neurons probably have two functions. First, they are suited to initiating ocular following responses when image motion is quite fast. Second, their spatiotemporal tuning makes them candidates for supplying a velocity error signal into the velocity storage mechanism, which is most prominent at high stimulus speeds. 5. Fourier analysis of the peristimulus time histograms derived from the response of both the slow and fast neurons revealed that the main frequency components of the responses occurred at the fundamental and second harmonic frequencies of the input signal at low stimulus temporal frequencies (< 3.04 Hz). At higher stimulus frequencies, the responses contained significant frequency components at higher odd-harmonics of the input signal.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 16 (6) ◽  
pp. 991-1000 ◽  
Author(s):  
MICHAEL R. IBBOTSON ◽  
COLIN W.G. CLIFFORD ◽  
RICHARD F. MARK

A nonlinear interaction between signals from at least two spatially displaced receptors is a fundamental requirement for a direction-selective motion detector. This paper characterizes the nonlinear mechanism present in the motion detector pathway that provides the input to wide-field directional neurons in the nucleus of the optic tract of the wallaby, Macropus eugenii. An apparent motion stimulus is used to reveal the interactions that occur between adjacent regions of the receptive fields of the neurons. The interaction between neighboring areas of the field is a nonlinear facilitation that is accurately predicted by the outputs of an array of correlation-based motion detectors (Reichardt detectors). Based on the similarity between the output properties of the detector array and the real neurons, it is proposed that the interaction between neighboring regions of the receptive field is a second-order nonlinearity such as a multiplication. The results presented here for wallaby neurons are compared to data collected from directional systems in other species.


1993 ◽  
Vol 10 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Robert Desimone ◽  
Jeffrey Moran ◽  
Stanley J. Schein ◽  
Mortimer Mishkin

AbstractThe classically defined receptive fields of V4 cells are confined almost entirely to the contralateral visual field. However, these receptive fields are often surrounded by large, silent suppressive regions, and stimulating the surrounds can cause a complete suppression of response to a simultaneously presented stimulus within the receptive field. We investigated whether the suppressive surrounds might extend across the midline into the ipsilateral visual field and, if so, whether the surrounds were dependent on the corpus callosum, which has a widespread distribution in V4. We found that the surrounds of more than half of the cells tested in the central visual field representation of V4 crossed into the ipsilateral visual field, with some extending up to at least 16 deg from the vertical meridian. Much of this suppression from the ipsilateral field was mediated by the corpus callosum, as section of the callosum dramatically reduced both the strength and extent of the surrounds. There remained, however, some residual suppression that was not further reduced by addition of an anterior commissure lesion. Because the residual ipsilateral suppression was similar in magnitude and extent to that found following section of the optic tract contralateral to the V4 recording, we concluded that it was retinal in origin. Using the same techniques employed in V4, we also mapped the ipsilateral extent of surrounds in the foveal representation of VI in an intact monkey. Results were very similar to those in V4 following commissural or contralateral tract sections. The findings suggest that V4 is a central site for long-range interactions both within and across the two visual hemifields. Taken with previous work, the results are consistent with the notion that the large suppressive surrounds of V4 neurons contribute to the neural mechanisms of color constancy and figure-ground separation.


1997 ◽  
Vol 14 (4) ◽  
pp. 741-749 ◽  
Author(s):  
Colin W.G. Clifford ◽  
Michael R. Ibbotson ◽  
Keith Langley

AbstractThere are marked similarities in the adaptation to motion observed in wide-field directional neurons found in the mammalian nucleus of the optic tract and cells in the insect lobula plate. However, while the form and time scale of adaptation is comparable in the two systems, there is a difference in the directional properties of the effect. A model based on the Reichardt detector is proposed to describe adaptation in mammals and insects, with only minor modifications required to account for the differences in directionality. Temporal-frequency response functions of the neurons and the model are shifted laterally and compressed by motion adaptation. The lateral shift enhances dynamic range and differential motion sensitivity. The compression is not caused by fatigue, but is an intrinsic property of the adaptive process resulting from interdependence of temporal-frequency tuning and gain in the temporal filters of the motion detectors.


2001 ◽  
Vol 85 (2) ◽  
pp. 724-734 ◽  
Author(s):  
Holger G. Krapp ◽  
Roland Hengstenberg ◽  
Martin Egelhaaf

Integrating binocular motion information tunes wide-field direction-selective neurons in the fly optic lobe to respond preferentially to specific optic flow fields. This is shown by measuring the local preferred directions (LPDs) and local motion sensitivities (LMSs) at many positions within the receptive fields of three types of anatomically identifiable lobula plate tangential neurons: the three horizontal system (HS) neurons, the two centrifugal horizontal (CH) neurons, and three heterolateral connecting elements. The latter impart to two of the HS and to both CH neurons a sensitivity to motion from the contralateral visual field. Thus in two HS neurons and both CH neurons, the response field comprises part of the ipsi- and contralateral visual hemispheres. The distributions of LPDs within the binocular response fields of each neuron show marked similarities to the optic flow fields created by particular types of self-movements of the fly. Based on the characteristic distributions of local preferred directions and motion sensitivities within the response fields, the functional role of the respective neurons in the context of behaviorally relevant processing of visual wide-field motion is discussed.


1992 ◽  
Vol 68 (5) ◽  
pp. 1667-1682 ◽  
Author(s):  
P. J. Simmons ◽  
F. C. Rind

1. We examine the critical image cues that are used by the locust visual system for the descending contralateral motion detector (DCMD) neuron to distinguish approaching from receding objects. Images were controlled by computer and presented on an electrostatic monitor. 2. Changes in overall luminance elicited much smaller and briefer responses from the DCMD than objects that appeared to approach the eye. Although a decrease in overall luminance might boost the response to an approaching dark object, movement of edges of the image is more important. 3. When two pairs of lines, in a cross-hairs configuration, were moved apart and then together again, the DCMD showed no preference for divergence compared with convergence of edges. A directional response was obtained by either making the lines increase in extent during divergence and decrease in extent during convergence; or by continually increasing the velocity of line movement during divergence and decreasing velocity during convergence. 4. The DCMD consistently gave a larger response to growing than to shrinking solid rectangular images. An increase compared with a decrease in the extent of edge in an image is, therefore, an important cue for the directionality of the response. For single moving edges of fixed extent, the neuron gave the largest response to edges that subtended 15 degrees at the eye. 5. The DCMD was very sensitive to the amount by which an edge traveled between frames on the display screen, with the largest responses generated by 2.5 degrees of travel. This implies that the neurons in the optic lobe that drive this movement-detecting system have receptive fields of about the same extent as a single ommatidium. 6. For edges moving up to 250 degree/s, the excitation of the DCMD increases with velocity. The response to an edge moving at a constant velocity adapts rapidly, in a manner that depends on velocity. Movement over one part of the retina can adapt the subsequent response to movement over another part of the retina. 7. For the DCMD to track and continue to respond to the image of an approaching object, the edges of the image must continually increase in velocity. This is the second important stimulus cue. 8. Edges of opposite contrasts (light-dark compared with dark-light) are processed in separate pathways that inhibit each other. This would contribute to the reduction of responses to wide-field movements.


2011 ◽  
Vol 106 (4) ◽  
pp. 1862-1874 ◽  
Author(s):  
Jan Churan ◽  
Daniel Guitton ◽  
Christopher C. Pack

Our perception of the positions of objects in our surroundings is surprisingly unaffected by movements of the eyes, head, and body. This suggests that the brain has a mechanism for maintaining perceptual stability, based either on the spatial relationships among visible objects or internal copies of its own motor commands. Strong evidence for the latter mechanism comes from the remapping of visual receptive fields that occurs around the time of a saccade. Remapping occurs when a single neuron responds to visual stimuli placed presaccadically in the spatial location that will be occupied by its receptive field after the completion of a saccade. Although evidence for remapping has been found in many brain areas, relatively little is known about how it interacts with sensory context. This interaction is important for understanding perceptual stability more generally, as the brain may rely on extraretinal signals or visual signals to different degrees in different contexts. Here, we have studied the interaction between visual stimulation and remapping by recording from single neurons in the superior colliculus of the macaque monkey, using several different visual stimulus conditions. We find that remapping responses are highly sensitive to low-level visual signals, with the overall luminance of the visual background exerting a particularly powerful influence. Specifically, although remapping was fairly common in complete darkness, such responses were usually decreased or abolished in the presence of modest background illumination. Thus the brain might make use of a strategy that emphasizes visual landmarks over extraretinal signals whenever the former are available.


1984 ◽  
Vol 52 (3) ◽  
pp. 538-552 ◽  
Author(s):  
K. R. Jones ◽  
R. E. Kalil ◽  
P. D. Spear

Rearing cats with esotropia is known to cause a number of deficits in visual behavior tested through the deviated eye. These include a loss of orienting response to stimuli presented in the nasal visual field of the deviated eye, a reduction in visual acuity, and a general reduction in contrast sensitivity at all spatial frequencies. To assess the involvement of the lateral geniculate nucleus (LGN) in these deficits, we measured the following: 1) the visual responsiveness of lamina A1 cells with peripheral (more than 10 degrees from area centralis) receptive fields in three esotropic and three normal cats and 2) the spatial resolution and contrast sensitivity of lamina A X-cells with central (within 5 degrees of the area centralis) receptive fields in six esotropic and six normal cats. For comparison, we also measured LGN X-cell spatial resolutions in four exotropic cats and in two cats raised with an esotropia in one eye and the lids of the other eye sutured shut (MD-estropes). Recordings from the lateral portion of lamina A1 in esotropic cats yielded similar numbers of visually responsive cells with far nasal receptive fields as were seen in normal animals. Peak and mean response rates to a flashing spot also were normal. In addition, no differences were found between esotropes and normals in the percentages of X- and Y-cells encountered. These results suggest that the loss of orienting response to stimuli presented in the nasal field (12, 20) is not due to a loss of neural responses in the LGN of esotropic cats. In addition, they suggest that decreases in cell size in lamina A1 of esotropic cats (13, 36; R. E. Kalil, unpublished observations) are not accompanied by marked functional abnormalities of the cells and that cortical abnormalities ipsilateral to the deviated eye (22) are likely to have their origin within striate cortex itself. Recordings from lamina A cells with receptive fields near area centralis revealed that the average X-cell spatial resolution in esotropes (2.1 cycles/deg) was significantly lower than that in normal cats (3.1 cycles/deg). This reduction was seen in all esotropic cats tested and was due both to an increase in the proportion of X-cells with very low spatial resolution and to a loss of X-cells responding to high spatial frequencies (greater than 3.25 cycles/deg). The average spatial resolution of X-cells driven by the deviated eye in MD-esotropes fell midway between those of esotropes and normals. In exotropes, mean X-cell spatial resolution was normal.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document