Roles of specific metabotropic glutamate receptor subtypes in regulation of hippocampal CA1 pyramidal cell excitability

1995 ◽  
Vol 74 (1) ◽  
pp. 122-129 ◽  
Author(s):  
R. W. Gereau ◽  
P. J. Conn

1. Metabotropic glutamate receptors (mGluRs) are coupled to various second-messenger systems through guanosine 5'-triphosphate-binding proteins. To date, at least seven mGluRs have been cloned, and these mGluR subtypes can be divided into three major groups on the basis of similarities in amino acid sequence, coupling to second-messenger cascades in expression systems, and pharmacological profiles. These groups include group I (mGluR1 and mGluR5), group II (mGluR2 and mGluR3), and group III (mGluR4, mGluR6, and mGluR7). 2. On the basis of its selective activation of phosphoinositide hydrolysis in brain slices and its ability to activate mGluR1a expressed in Xenopus oocytes, others have suggested that 3.5-dihydroxyphenylglycine (DHPG) may be selective for group I mGluRs. Consistent with this hypothesis, we report that DHPG also activates mGluR5 expressed in oocytes, whereas it is inactive at mGluR4 and mGluR7 expressed in baby hamster kidney (BHK) cells. The compound (2S,1'R,2'R,3'R)-2-(2.3-dicarboxycyclopropyl)glycine (DCG-IV) activates both mGluR2 and mGluR3 at submicromolar concentrations, whereas it is inactive at mGluR4 and mGluR1, suggesting that this compound may be selective for group II mGluRs. Consistent with this hypothesis, we find that DCG-IV does not activate mGluR5 expressed in oocytes and does not activate mGluR7 expressed in BHK cells. These findings suggest that DHPG and DCG-IV are highly selective agonists for group I and group II mGluRs, respectively. 3. Previous studies that have examined the physiological roles of mGluRs have generally used agonists that do not differentiate between the various subtypes.(ABSTRACT TRUNCATED AT 250 WORDS)

2003 ◽  
Vol 89 (3) ◽  
pp. 1308-1316 ◽  
Author(s):  
A. E. Bandrowski ◽  
J. R. Huguenard ◽  
D. A. Prince

Possible functional roles for glutamate that is detectable at low concentrations in the extracellular space of intact brain and brain slices have not been explored. To determine whether this endogenous glutamate acts on metabotropic glutamate receptors (mGluRs), we obtained whole cell recordings from layer V pyramidal neurons of rat sensorimotor cortical slices. Blockade of mGluRs with (+)-α-amino-4-carboxy-α-methyl-benzeacetic acid (MCPG, a general mGluR antagonist) increased the mean amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), an effect attributable to a selective increase in the occurrence of large amplitude sEPSCs. 2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495, a group II antagonist) increased, but R(−)-1-amino-2,3-dihydro-1H-indene-1,5-dicarboxylic acid (AIDA) and (RS)-hexyl-HIBO (group I antagonists) decreased sEPSC amplitude, and (R,S)-α-cyclopropyl-4-phosphonophenylglycine (CPPG, a group III antagonist) did not change it. The change in sEPSCs elicited by MCPG, AIDA, and LY341495 was absent in tetrodotoxin, suggesting that it was action potential-dependent. The increase in sEPSCs persisted in GABA receptor antagonists, indicating that it was not due to effects on inhibitory interneurons. AIDA and ( S)-3,5-dihydroxyphenylglycine (DHPG, a group I agonist) elicited positive and negative shifts in holding current, respectively. LY341495 and (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG-IV, a group II agonist) elicited negative and positive shifts in holding current, respectively. The AIDA and LY341495 elicited currents persisted in TTX. Finally, in current clamp, LY341495 depolarized cells by ∼2 mV and increased the number of action potentials to a given depolarizing current pulse. Thus ambient levels of glutamate tonically activate mGluRs and regulate cortical excitability.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Francine Acher ◽  
Giuseppe Battaglia ◽  
Hans Bräuner-Osborne ◽  
P. Jeffrey Conn ◽  
Robert Duvoisin ◽  
...  

Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [347]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate [138]. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. mGlu form constitutive dimers, cross-linked by a disulfide bridge. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [198, 271, 264, 399]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organization similar to that of other GPCRs, although the helices appear more compacted [87, 429, 61]. Recent advances in cryo-electron microscopy have provided structures of full-length mGlu receptor dimers [189]. Studies have revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [88]. First well characterized in transfected cells, co-localization and specific pharmacological properties also suggest the existence of such heterodimers in the brain [266].[436, 143, 279]. Beyond heteromerization with other mGlu receptor subtypes, increasing evidence suggests mGlu receptors form heteromers and larger order complexes with class A GPCRs (reviewed in [138]). The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [30] and antagonized by (S)-hexylhomoibotenic acid [232]. Group-II mGlu receptors may be activated by LY389795 [265], LY379268 [265], eglumegad [350, 430], DCG-IV and (2R,3R)-APDC [351], and antagonised by eGlu [168] and LY307452 [421, 103]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [128]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [183]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as ‘potentiators’ of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist.


2000 ◽  
Vol 84 (6) ◽  
pp. 2998-3009 ◽  
Author(s):  
Volker Neugebauer ◽  
Ping-Sun Chen ◽  
William D. Willis

The heterogeneous family of G-protein-coupled metabotropic glutamate receptors (mGluRs) provides excitatory and inhibitory controls of synaptic transmission and neuronal excitability in the nervous system. Eight mGluR subtypes have been cloned and are classified in three subgroups. Group I mGluRs can stimulate phosphoinositide hydrolysis and activate protein kinase C whereas group II (mGluR2 and 3) and group III (mGluR4, 6, 7, and 8) mGluRs share the ability to inhibit cAMP formation. The present study examined the roles of groups II and III mGluRs in the processing of brief nociceptive information and capsaicin-induced central sensitization of primate spinothalamic tract (STT) cells in vivo. In 11 anesthetized male monkeys ( Macaca fascicularis), extracellular recordings were made from 21 STT cells in the lumbar dorsal horn. Responses to brief (15 s) cutaneous stimuli of innocuous (brush), marginally and distinctly noxious (press and pinch, respectively) intensity were recorded before, during, and after the infusion of group II and group III mGluR agonists into the dorsal horn by microdialysis. Different concentrations were applied for at least 20 min each (at 5 μl/min) to obtain cumulative concentration-response relationships. Values in this paper refer to the drug concentrations in the microdialysis fibers; actual concentrations in the tissue are about three orders of magnitude lower. The agonists were also applied at 10–25 min after intradermal capsaicin injection. The group II agonists (2S,1′S,2′S)-2-(carboxycyclopropyl)glycine (LCCG1, 1 μM-10 mM, n = 6) and (−)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268; 1 μM-10 mM, n = 6) had no significant effects on the responses to brief cutaneous mechanical stimuli (brush, press, pinch) or on ongoing background activity. In contrast, the group III agonist L(+)-2-amino-4-phosphonobutyric acid (LAP4, 0.1 μM-10 mM, n = 6) inhibited the responses to cutaneous mechanical stimuli in a concentration-dependent manner, having a stronger effect on brush responses than on responses to press and pinch. LAP4 did not change background discharges significantly. Intradermal injections of capsaicin increased ongoing background activity and sensitized the STT cells to cutaneous mechanical stimuli (ongoing activity > brush > press > pinch). When given as posttreatment, the group II agonists LCCG1 (100 μM, n = 5) and LY379268 (100 μM, n = 6) and the group III agonist LAP4 (100 μM, n = 6) reversed the capsaicin-induced sensitization. After washout of the agonists, the central sensitization resumed. Our data suggest that, while activation of both group II and group III mGluRs can reverse capsaicin-induced central sensitization, it is the actions of group II mGluRs in particular that undergo significant functional changes during central sensitization because they modulate responses of sensitized STT cells but have no effect under control conditions.


2013 ◽  
Vol 74 ◽  
pp. 135-146 ◽  
Author(s):  
David Lodge ◽  
Patrick Tidball ◽  
Marion S. Mercier ◽  
Sarah J. Lucas ◽  
Lydia Hanna ◽  
...  

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Francine Acher ◽  
Giuseppe Battaglia ◽  
Hans Bräuner-Osborne ◽  
P. Jeffrey Conn ◽  
Robert Duvoisin ◽  
...  

Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [334]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [190, 262, 255, 386]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organization similar to that of other GPCRs, although the helices appear more compacted [85, 415, 59]. mGlu form constitutive dimers crosslinked by a disulfide bridge. Recent studies revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [86]. Although well characterized in transfected cells, co-localization and specific pharmacological properties also suggest the existence of such heterodimers in the brain [422, 257]. The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [29] and antagonized by (S)-hexylhomoibotenic acid [223]. Group-II mGlu receptors may be activated by LY389795 [256], LY379268 [256], eglumegad [337, 416], DCG-IV and (2R,3R)-APDC [338], and antagonised by eGlu [161] and LY307452 [408, 100]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [125]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [176]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as ‘potentiators’ of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist.


1997 ◽  
Vol 78 (3) ◽  
pp. 1468-1475 ◽  
Author(s):  
N. E. Schoppa ◽  
G. L. Westbrook

Schoppa, N. E. and G. L. Westbrook. Modulation of mEPSCs in olfactory bulb mitral cells by metabotropic glutamate receptors. J. Neurophysiol. 78: 1468–1475, 1997. Olfactory bulb mitral cells express group I (mGluR1), group II (mGluR2), and group III (mGluR7 and mGluR8) metabotropic glutamate receptors. We examined the role of these mGluRs on excitatory synaptic transmission in cultured mitral cells with the use of whole cell patch-clamp recordings. The effects of group-selective mGluR agonists and antagonists were tested on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-receptor-mediated miniature excitatory postsynaptic currents (mEPSCs). (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylate (ACPD) or the group-I-selective agonist 3,5-dihydroxyphenylglycine evoked an inward current accompanied by a decrease in membrane conductance, consistent with the previously described closure of potassium channels by group I agonists. The increased cellular excitability was accompanied by an increase in mEPSC frequency in some cells. When calcium entry was blocked by cadmium, ACPD or the group-II-selective agonist 2-(2,3-dicarboxycyclopropyl)-glycine reduced the mEPSC frequency. l-2-amino-4-phosphonobutyric acid (l-AP4), a group-III-selective agonist, caused a similar decrease. The concentration-dependence ofl-AP4-mediated inhibition was most consistent with activation of mGluR8. We investigated two possible effector mechanisms for the group III presynaptic receptor. Bath application of forskolin or 3-isobutyl-1-methylxantine had no effect on mEPSC frequency. Increasing calcium influx by raising extracellular K+ caused a large increase in the mEPSC frequency but did not enhance l-AP4-mediated inhibition. Thus inhibition of mEPSCs involves a mechanism downstream of calcium entry and appears to be independent of adenosine 3′,5′-cyclic monophosphate. Our results indicate that both group II and III receptors can inhibit glutamate release at mitral cell terminals. Although group II/III receptors had a similar effect on mEPSCs, differences in location on nerve terminals and in glutamate sensitivity suggest that each mGluR may have discrete actions on mitral cell activity.


Epilepsia ◽  
2003 ◽  
Vol 44 (6) ◽  
pp. 785-795 ◽  
Author(s):  
Eleonora Aronica ◽  
Jan A. Gorter ◽  
Gerard H. Jansen ◽  
Cees W. M. Van Veelen ◽  
Peter C. Van Rijen ◽  
...  

2010 ◽  
Vol 103 (2) ◽  
pp. 1104-1113 ◽  
Author(s):  
Miloslav Kolaj ◽  
Leo P. Renaud

Cardiovascular and behavioral responses to circulating angiotensin require intact connectivity along the upper lamina terminalis joining the subfornical organ (SFO) with the median preoptic nucleus (MnPO). In the present study on MnPO neurons, we used whole cell patch-clamp recording techniques in brain slice preparations to evaluate the influence of metabotropic glutamate receptor (mGluR) agonists on modulating their intrinsic excitability and SFO-evoked glutamatergic and GABAergic postsynaptic currents. In 22/36 cells, bath application of a mGluR group I agonist ( S)-3,5-dihydroxyphenylglycine (DHPG) induced a TTX-resistant inward current coupled with decrease in a membrane K+ conductance but also a possible increase in a nonselective cationic conductance. By contrast, 27/49 cells responded to a mGluR group II agonist (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG IV) with a TTX-resistant outward current and increase in membrane conductance that reversed around −95 mV, suggesting opening of K+ channels. None of 19 cells responded to the mGluR group III agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4). Agonists for all mGluR groups suppressed SFO-evoked excitatory postsynaptic currents and significantly increased paired-pulse ratios, implying a presynaptic mechanism. Only the mGluR group II agonist significantly reduced SFO-evoked inhibitory postsynaptic currents and caused an increase in paired-pulse ratios. These results suggest a complexity of pre- and postsynaptic mGluRs are available to modulate rapid neurotransmission along the upper lamina terminalis from SFO to MnPO.


Sign in / Sign up

Export Citation Format

Share Document