Electrophysiological responses of single olfactory bulb neurons to binary mixtures of amino acids in the channel catfish, Ictalurus punctatus

1995 ◽  
Vol 74 (4) ◽  
pp. 1435-1443 ◽  
Author(s):  
J. Kang ◽  
J. Caprio

1. For the first time in any vertebrate, responses of single olfactory bulb neurons to odorant mixtures were studied quantitatively in the channel catfish, Ictalurus punctatus. 2. Extracellular electrophysiological responses of 61 single olfactory bulb neurons from 36 channel catfish to binary mixtures of amino acids and to their components were recorded simultaneously with the electro-olfactogram (EOG). Tested were a total of 297 mixture trials consisting of 18 different stimulus pairs formed from 8 amino acids. 3. For 42% (126 of the 297) of the tests, no significant change (N) from spontaneous activity occurred. Responses to the remaining 171 tests of binary mixtures were excitatory (E; 29%) or suppressive (S; 29%). No response type was associated with any specific mixture across the neurons sampled. 4. Mixture interactions that changed response types (E or S) from those observed to the individual components were rare, because 89% of the responses of single olfactory bulb neurons to the tested binary mixtures were classified similarly as the responses to at least one of the components. 5. Responses of single olfactory bulb neurons were generally predictable for binary mixtures whose component responses were classified as both E, both S, and both N. For binary mixtures whose component responses were classified differently (e.g., one component evoked excitatory responses and the other evoked suppressive responses), the predictability of the response was dependent on the specific mixture type.

1997 ◽  
Vol 77 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Jiesheng Kang ◽  
John Caprio

Kang, Jiesheng and John Caprio. In vivo response of single olfactory receptor neurons of channel catfish to binary mixtures of amino acids. J. Neurophysiol. 77: 1–8, 1997. For the first time in any vertebrate, in vivo responses of single olfactory receptor neurons to odorant mixtures were studied quantitatively. Extracellular electrophysiological response of 54 single olfactory receptor neurons from 23 channel catfish, Ictalurus punctatus, to binary mixtures of amino acids and to their components were recorded simultaneously with the electroolfactogram (EOG). For 57% (73 of 128) of the tests, no significant change (N) from spontaneous activity occurred. Responses to the remaining 55 tests of binary mixtures were excitatory (E; 13%) or suppressive (S; 30%). No response type was associated with any specific mixture across the neurons sampled. Eighty-six percent of the responses of catfish olfactory receptor neurons to binary mixtures were classifed similar to at least one of the component responses, a percentage comparable (i.e., 89%) with that observed for single olfactory bulb neurons in the same species to equivalent binary mixtures. The responses of single olfactory receptor neurons to component-similar binary mixtures (i.e., component responses were both E, both S, and both N, respectively) were generally (80% of 59 tests) classified similar to the responses to the components. For E+N and S+N binary mixtures, the N component often (66% of 58 tests) reduced or concealed (i.e., “masked”) the excitatory and suppressive responses, respectively. For the majority (6 of 11 tests) of E+S binary mixtures, null activity resulted. Responses to the remaining five tests were either excitatory ( n = 3) or suppressive ( n = 2).


2001 ◽  
Vol 86 (4) ◽  
pp. 1869-1876 ◽  
Author(s):  
Alexander A. Nikonov ◽  
John Caprio

Extracellular electrophysiological recordings from single olfactory bulb (OB) neurons in the channel catfish, Ictalurus punctatus, indicated that the OB is divided into different functional zones, each processing a specific class of biologically relevant odor. Different OB regions responded preferentially at slightly above threshold to either a mixture of 1) bile salts (10–7 to 10−5 M Na+ salts of taurocholic, lithocholic, and taurolithocholic acids), 2) nucleotides [10–6 to 10–4 M adenosine-5′-triphosphate (ATP), inosine-5′-monophosphate (IMP), and inosine-5′-triphosphate (ITP)], or 3) amino acids (10–6 to 10–4M l-alanine,l-methionine, l-arginine, andl-glutamate). Excitatory responses to bile salts were observed primarily in a thin, medial strip in both the dorsal (100–450 μm) and ventral (900–1,200 μm) OB. Excitatory responses to nucleotides were obtained primarily from dorsal, caudolateral OB, whereas excitatory responses to amino acids occurred more rostrally in the dorsolateral OB, but continued more medially in the ventral OB. The chemotopy within the channel catfish OB is more comparable to that previously described by optical imaging studies in zebrafish than by field potential studies in salmonids. The present results are consistent with recent studies, suggesting that the specific spatial organization of output neurons in the OB is necessary for the quality coding/decoding of olfactory information.


1995 ◽  
Vol 74 (4) ◽  
pp. 1421-1434 ◽  
Author(s):  
J. Kang ◽  
J. Caprio

1. Responses of 89 single olfactory bulb neurons from 43 channel catfish, Ictalurus punctatus, to amino acid odorants were recorded in vivo simultaneously with the electro-olfactogram (EOG). Recording time for individual neurons ranged from 16 to 344 min. The averaged spontaneous frequency ranged from x003C; 1 to 16 action potentials/s with a mean frequency of 5.2 +/- 3.6 (SD) action potentials/s. 2. Histological examinations of carbocyanine dye 1,1'diocadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled olfactory bulbs and electrical stimulation of the olfactory tracts in a subset of experiments suggested that the majority of the recorded olfactory bulb neurons in this study were mitral cells. 3. Olfactory bulb neurons responded to amino acids with either an excitation or suppression of the background neural activity. Of the 337 stimulus applications, 28% of the responses were excitatory, and 33% were suppressive. The approximately 1:1 ratio of excitatory to suppressive responses for all stimulus applications suggests that suppressive responses also play important roles in the coding of odorant information in the channel catfish. 4. Responses of single olfactory bulb neurons were highly reproducible over time (up to 5 h). Responses to any amino acid never changed from excitation to suppression, or vice versa over time. 5. Single olfactory bulb neurons responded with excitation or suppression to more than one amino acid previously indicated to bind to independent receptors. 6. Estimated threshold concentrations for activation of an olfactory bulb neuron ranged from 10(-7) to 10(-3) M and were different from neuron to neuron for a particular stimulus and from stimulus to stimulus for a particular neuron. Responses of single olfactory bulb neurons to a given amino acid did not change from excitation to suppression, or vice versa, across different suprathreshold concentrations.


1999 ◽  
Vol 82 (2) ◽  
pp. 564-569 ◽  
Author(s):  
K. Ogawa ◽  
J. Caprio

We investigated the neural processing of binary gustatory mixtures of amino acids by the facial taste system of the channel catfish, Ictalurus punctatus. In vivo electrophysiological recordings indicated that the magnitude of both integrated and single-unit facial taste responses to binary mixtures of amino acids was greatest if the components bound to independent receptor sites. Facial taste responses were obtained from 32 multiunit and 55 single taste fiber preparations to binary mixtures of amino acids whose components bind to independent taste receptor sites (group I) or to the same or highly cross-reactive taste receptor sites (group II). All component stimuli were adjusted in concentration to provide approximately equal response magnitude as determined by either the height of the integrated multiunit taste response or by the number of action potentials generated/3 s of response time/single taste fiber. The mixture discrimination index (MDI), defined as the response to the mixture divided by the average of the responses to the component stimuli, was calculated for each test of a binary mixture. MDIs of group I binary mixtures for both the integrated multiunit and single fiber data were significantly greater than those for either the control or group II binary mixtures. In a subset of multiunit recordings, the MDIs of a group I binary mixture across three log units of stimulus concentration were similar and significantly greater than those of a group II binary mixture. Analysis of the single fiber data also indicated that the MDIs of group I binary mixtures were significantly larger than those of group II binary mixtures for both alanine-best and arginine-best taste fibers; however, the MDIs of group I binary mixtures calculated from recordings from arginine-best taste fibers were significantly greater than those recorded from alanine-best taste fibers.


1995 ◽  
Vol 73 (1) ◽  
pp. 172-177 ◽  
Author(s):  
J. Kang ◽  
J. Caprio

1. We report for the first time in any teleost, a quantitative in vivo study of recordings from single olfactory receptor neurons (ORNs) in the channel catfish, Ictalurus punctatus, with odorant stimuli. 2. Responses of 69 spontaneously active single ORNs were recorded simultaneously with the electroolfactogram (EOG). Recording times ranged from 10 to 72 min per receptor cell with an average of 24 +/- 15 (SD) min/cell. The averaged spontaneous frequency ranged from < 1 to 12 action potentials/s with a mean frequency of 4.7 +/- 2.5 action potentials/s. 3. Catfish ORNs responded to the odorant stimuli (amino acids, bile salts, and ATP) with either an excitation or suppression of the background neural activity. Suppressive responses were encountered more frequently than excitatory responses, suggesting that suppressive responses also play an important role in olfactory coding. 4. Excitatory and suppressive responses to the different odorants were elicited from the same ORN, suggesting that different olfactory receptor molecules and different transduction pathways exist in the same ORN.


1991 ◽  
Vol 98 (4) ◽  
pp. 699-721 ◽  
Author(s):  
J S Kang ◽  
J Caprio

In vivo electrophysiological recordings from populations of olfactory receptor neurons in the channel catfish, Ictalurus punctatus, clearly showed that both electro-olfactogram and integrated neural responses of olfactory receptor cells to complex mixtures consisting of up to 10 different amino acids were predictable with knowledge of (a) the responses to the individual components in the mixture and (b) the relative independence of the respective receptor sites for the component stimuli. All amino acid stimuli used to form the various mixtures were initially adjusted in concentration to provide approximately equal response magnitudes. Olfactory receptor responses to both multimixtures and binary mixtures were recorded. Multimixtures were formed by mixing equal aliquots of 3-10 different amino acids. Binary mixtures were formed by mixing equal aliquots of two equally stimulatory solutions. Solution 1 contained either one to nine different neutral amino acids with long side-chains (LCNs) or one to five different neutral amino acids with short side-chains (SCNs). Solution 2, comprising the binary mixture, consisted of only a single stimulus, either a LCN, SCN, basic, or acidic amino acid. The increasing magnitude of the olfactory receptor responses to mixtures consisting of an increasing number of neutral amino acids indicated that multiple receptor site types with highly overlapping specificities exist to these compounds. For both binary mixtures and multimixtures composed of neutral and basic or neutral and acidic amino acids, the receptor responses were significantly enhanced compared with those mixtures consisting of an equal number of only neutral amino acids. These results demonstrate that receptor sites for the basic and acidic amino acids, respectively, are highly independent of those for the neutral amino acids, and suggest that a mechanism for synergism is the simultaneous activation of relatively independent receptor sites by the components in the mixture. In contrast, there was no evidence for the occurrence of mixture suppression.


Sign in / Sign up

Export Citation Format

Share Document