Slow and saccadic eye movements evoked by microstimulation in the supplementary eye field of the cebus monkey

1995 ◽  
Vol 74 (5) ◽  
pp. 2204-2210 ◽  
Author(s):  
J. R. Tian ◽  
J. C. Lynch

1. Intracortical microstimulation was used to map the supplementary eye field (SEF) in eight hemispheres of five Cebus apella monkeys. Monkeys were immobilized during experiments with Telazol (tiletamine HCl and zolazepam HCl), a dissociative anesthetic agent that was demonstrated to have no significant effect on microstimulation-induced eye movement parameters compared with similar experiments in alert, behaviorally trained monkeys. The functional subregions were defined with the use of low-threshold current (< or = 50 microA). Electrically elicited eye movements were videotaped and quantified. Both slow and saccadic eye movements were reliably evoked at low threshold by microstimulation in each of eight hemispheres studied. The two types of eye movements were clearly distinguished by their significantly different duration and velocity (P < 0.0001) and their different responses to long stimulus trains. The results strongly support the proposal that the SEF produces not only saccadic eye movements as previously reported but also slow (pursuit) eye movements.

1999 ◽  
Vol 82 (1) ◽  
pp. 463-471 ◽  
Author(s):  
Laurent Petit ◽  
James V. Haxby

We have investigated the functional anatomy of pursuit eye movements in humans with functional magnetic imaging. The performance of pursuit eye movements induced activations in the cortical eye fields also activated during the execution of visually guided saccadic eye movements, namely in the precentral cortex [frontal eye field (FEF)], the medial superior frontal cortex (supplementary eye field), the intraparietal cortex (parietal eye field), and the precuneus, and at the junction of occipital and temporal cortex (MT/MST) cortex. Pursuit-related areas could be distinguished from saccade-related areas both in terms of spatial extent and location. Pursuit-related areas were smaller than their saccade-related counterparts, three of eight significantly so. The pursuit-related FEF was usually inferior to saccade-related FEF. Other pursuit-related areas were consistently posterior to their saccade-related counterparts. The current findings provide the first functional imaging evidence for a distinction between two parallel cortical systems that subserve pursuit and saccadic eye movements in humans.


2007 ◽  
Vol 45 (5) ◽  
pp. 997-1008 ◽  
Author(s):  
Andrew Parton ◽  
Parashkev Nachev ◽  
Timothy L. Hodgson ◽  
Dominic Mort ◽  
David Thomas ◽  
...  

1997 ◽  
Vol 14 (5) ◽  
pp. 853-865 ◽  
Author(s):  
S. J. Heinen ◽  
M. Liu

AbstractA region of dorsomedial frontal cortex (DMFC) has been implicated in planning and executing saccadic eye movements; hence it has been referred to as a supplementary eye field (SEF). Recently, activity related to executing smooth-pursuit eye movements has been recorded from the DMFC, and microstimulation here has been shown to evoke smooth eye movements. This report documents neuronal activity present in smooth-pursuit tasks where the predictability of target motion was manipulated. The activity of many neurons in the DMFC reached a peak when a predictable change in target motion occurred. Furthermore, the peak activity of some cells was systematically shifted by manipulating the duration of the target event, indicating that the network these neurons were in could learn the temporal characteristics of new target motion. Finally, the activity of most neurons tested was greater when target motion was predictable than when it was unpredictable. The results suggest that the DMFC participates in planning smooth-pursuit eye movements based on past stimulus history.


1993 ◽  
Vol 69 (3) ◽  
pp. 800-818 ◽  
Author(s):  
G. S. Russo ◽  
C. J. Bruce

1. We quantitatively compared the effects of eye position within the orbit on saccadic eye movements electrically elicited from two oculomotor areas of the macaque monkey's frontal lobe cortex: the frontal eye field (FEF) and the supplementary eye field (SEF). 2. The effect of eye position on electrically elicited saccades was studied by delivering 70-ms trains of intracortical microstimulation while the monkeys fixated a spot of light. Tests of different fixation points located across a rectangular array were randomly intermixed. Complete experiments were carried out on 38 sites in three FEFs of two monkeys and 59 sites from three SEFs of the same two monkeys. Stimulation currents for the array experiments were usually 10–20 microA above the site threshold; the average current used was 36 microA for FEF and 49 microA for SEF. 3. The magnitude of effect of the initial eye position on the elicited saccade's dimensions was quantified at each site by computing the linear regression of saccadic eye movement displacement on the eye position within the orbit when stimulation was applied. This computation was done separately for the horizontal and vertical axes. We call the resulting pair of regression coefficients “orbital perturbation indexes.” Indexes of 0.0 represent elicited saccades that do not change their trajectory with different initial eye positions (constant-vector saccades), whereas indexes of -1.0 represent elicited saccades that end at the same orbital position regardless of initial eye position (goal-directed saccades). 4. The effect of eye position varied across sites. In both FEF and SEF, the orbital perturbation indexes were distributed between approximately 0.0 and -0.5, with the horizontal and vertical indexes highly correlated across sites. 5. The average orbital perturbation indexes were small for both eye fields and were not significantly different. The mean horizontal indexes were -0.13 and -0.16 for SEF and FEF, respectively. The mean vertical indexes were -0.16 and -0.13. Neither SEF versus FEF difference was statistically significant. 6. In both SEF and FEF, sites yielding larger-amplitude saccades generally had larger orbital effects than sites yielding smaller saccades. This relationship accounted for the majority of the variability of the orbital perturbation indexes across sites in both SEF and FEF. 7. These results indicate that SEF and FEF are not distinguished from each other by the orbital dependence of their electrically elicited saccades. Thus they do not confirm the previously hypothesized dichotomy that FEF codes constant-vector saccades and SEF codes goal-directed saccades.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 10 (2) ◽  
pp. 385-393 ◽  
Author(s):  
Jeffrey D. Schall ◽  
Anne Morel ◽  
Jon H. Kaas

AbstractTwo discrete areas in frontal cortex are involved in generating saccadic eye movements—the frontal eye field (FEF) and the supplementary eye field (SEF). Whereas FEF represents saccades in a topographic retinotopic map, recent evidence indicates that saccades may be represented craniotopically in SEF. To further investigate the relationship between these areas, the topographic organization of afferents to FEF from SEF in Macaco mulatto was examined by placing injections of distinct retrograde tracers into different parts of FEF that represented saccades of different amplitudes. Central FEF (lateral area 8A), which represents saccades of intermediate amplitudes, received afferents from a larger portion of SEF than did lateral FEF (area 45), which represents shorter saccades, or medial FEF (medial area 8A), which represents the longest saccades in addition to pinna movements. Moreover, in every case the zone in SEF that innervated lateral FEF (area 45) also projected to medial FEF (area 8A). In one case, a zone in rostral SEF projected to both lateral area 8A from which eye movements were evoked by microstimulation as well as medial area 8A from which pinna movements were elicited by microstimulation. This pattern of afferent convergence and divergence from SEF onto the retinotopic saccade map in FEF is indicative of some sort of map transformation between SEF and FEF. Such a transformation would be necessary to interconnect a topographic craniotopic saccade representation in SEF with a topographic retinotopic saccade representation in FEF.


1996 ◽  
Vol 76 (2) ◽  
pp. 825-848 ◽  
Author(s):  
G. S. Russo ◽  
C. J. Bruce

1. We investigated whether neurons in the supplementary eye field (SEF) of macaque monkeys code saccadic eye movements in oculocentric coordinates (relative to the current direction of fixation) or in craniocentric coordinates (relative to the head). Craniocentric coding in SEF had been previously suggested by the convergent appearance of electrically elicited saccades originating at different orbital positions. 2. We primarily studied SEF neurons that started responding before the beginning of saccades because such presaccadic activity is likely related to saccade generation and metrics. Using a memory-saccade task, we classified the presaccadic activity of each neuron as either purely visual related, purely movement related, or both visual and movement related. 3. We then mapped the response fields (receptive fields and movement fields) of SEF neurons from different orbital positions. When mapped relative to a central fixation point, the strongest responses for a given SEF neuron invariably occurred for a particular polar direction with fairly symmetrical declines for departures from that direction. When tested using other fixation point locations, their strongest responses almost always continued to occur for stimuli having the same polar direction relative to each fixation point tested, and thus they appeared to code both stimulus direction and saccade direction in an oculocentric coordinate system. 4. The effect of eye position on SEF presaccadic activity was quantified in two ways by computing, for each neuron, 1) an "intersection distance," the eccentricity of the point where extensions of the neuron's optimal polar directions measured at two eccentric orbital positions converged, and 2) an "orbital perturbation index" such that an index of 0 corresponded to no change in the neuron's optimal polar direction across different orbital positions (i.e., perfectly oculocentric response fields) and an index of 1 corresponded to optimal polar directions that converged to the same craniocentric goal regardless of initial eye position (i.e., perfectly craniocentric response fields). For neurons with both visual and movement responses, these measures were calculated separately for each type of activity using tasks that temporally separated the visual cue presentation and the saccade to it. 5. Almost all of the intersection distances were well beyond the oculomotor range (+/- 50 degrees) of the monkey (38/39 for movement activity and 62/66 for visual activity). The median intersection distance for visual activity was very large (274 degrees), and the median for movement activity was slightly divergent (beyond infinity). Thus SEF neurons rarely showed a conspicuous convergence of response field direction. 6. Likewise, the mean orbital perturbation indexes were very small (-0.04 +/- 0.21, mean +/- SD, for movement activity and 0.09 +/- 0.15 for visual activity), also indicating that SEF neurons code stimuli and saccades in an oculocentric manner. 7. For neurons with both visual and movement activities, the orbital perturbation indexes of the two activities were not significantly correlated (r = 0.16), even though their characteristic directions (optimal polar direction estimated from the center of the screen) were almost the same (circular correlation, r+ = 0.97). The lack of a significant correlation between the visual and movement activity orbital perturbation indexes is consistent with the hypothesis that most of the variation in this index represents statistically independent errors of measurement. Conversely, the strong covariation of visual and movement activity characteristic directions indicates that directional preference is a fundamental functional property of SEF presaccadic activity.(ABSTRACT TRUNCATED)


1985 ◽  
Vol 54 (3) ◽  
pp. 714-734 ◽  
Author(s):  
C. J. Bruce ◽  
M. E. Goldberg ◽  
M. C. Bushnell ◽  
G. B. Stanton

We studied single neurons in the frontal eye fields of awake macaque monkeys and compared their activity with the saccadic eye movements elicited by microstimulation at the sites of these neurons. Saccades could be elicited from electrical stimulation in the cortical gray matter of the frontal eye fields with currents as small as 10 microA. Low thresholds for eliciting saccades were found at the sites of cells with presaccadic activity. Presaccadic neurons classified as visuomovement or movement were most associated with low (less than 50 microA) thresholds. High thresholds (greater than 100 microA) or no elicited saccades were associated with other classes of frontal eye field neurons, including neurons responding only after saccades and presaccadic neurons, classified as purely visual. Throughout the frontal eye fields, the optimal saccade for eliciting presaccadic neural activity at a given recording site predicted both the direction and amplitude of the saccades that were evoked by microstimulation at that site. In contrast, the movement fields of postsaccadic cells were usually different from the saccades evoked by stimulation at the sites of such cells. We defined the low-threshold frontal eye fields as cortex yielding saccades with stimulation currents less than or equal to 50 microA. It lies along the posterior portion of the arcuate sulcus and is largely contained in the anterior bank of that sulcus. It is smaller than Brodmann's area 8 but corresponds with the union of Walker's cytoarchitectonic areas 8A and 45. Saccade amplitude was topographically organized across the frontal eye fields. Amplitudes of elicited saccades ranged from less than 1 degree to greater than 30 degrees. Smaller saccades were evoked from the ventrolateral portion, and larger saccades were evoked from the dorsomedial portion. Within the arcuate sulcus, evoked saccades were usually larger near the lip and smaller near the fundus. Saccade direction had no global organization across the frontal eye fields; however, saccade direction changed in systematic progressions with small advances of the microelectrode, and all contralateral saccadic directions were often represented in a single electrode penetration down the bank of the arcuate sulcus. Furthermore, the direction of change in these progressions periodically reversed, allowing particular saccade directions to be multiply represented in nearby regions of cortex.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 88 (6) ◽  
pp. 3541-3545 ◽  
Author(s):  
Masaki Isoda ◽  
Jun Tanji

To investigate how single neurons in the supplementary eye field (SEF) participate in sequential performance of multiple saccades, we analyzed presaccadic activity while monkeys were performing three saccades in six different orders from memory. The saccades in each sequence were separated by a fixation period and initiated from the same fixation point with intervening return saccades. We found that the majority of the presaccadic activity of the SEF neurons differed significantly depending on the numerical position of saccades in each sequence (rank order). This rank-order selectivity was found in parallel with the selectivity for the sequence of three saccades. Our data suggest a role for SEF neurons in the coding of temporally ordered saccadic eye movements.


2003 ◽  
Vol 89 (5) ◽  
pp. 2678-2684 ◽  
Author(s):  
Dong-Mei Cui ◽  
Yi-Jun Yan ◽  
James C. Lynch

It has been well established by recording, inactivation, and neuroanatomical studies that the caudate nucleus is important for the control of saccadic eye movements. However, until now, there has been little evidence that the caudate nucleus plays a role in smooth pursuit eye movements. In the present study, we physiologically identified the smooth pursuit subregion of the frontal eye field (FEFsem) and the saccadic subregion of the frontal eye field (FEFsac) in four Cebus monkeys. Anterogradely transported tracers (biotinylated dextran amines and wheat germ aglutinin conjugated to horseradish peroxidase) were then used to determine the efferent connections of the FEFsem to the caudate nucleus and to compare those connections with projections arising in the FEFsac. We observed dense projections from the FEFsem to the head and body of the caudate. The FEFsem and FEFsac terminal fields were of approximately equal density and total area. The region of FEFsem-labeled axon terminals overlapped only slightly with the region of FEFsac-labeled terminals. These results suggest that the caudate nucleus may play an important role in the control of smooth pursuit eye movements via feedback loops involving the basal ganglia and thalamus. Our results further suggest that the basal ganglia circuitry concerned with controlling visual pursuit is physically segregated from that concerned with controlling saccadic eye movements.


Sign in / Sign up

Export Citation Format

Share Document