Simulated Optic Flow and Extrastriate Cortex. II. Responses to Bar Versus Large-Field Stimuli

1997 ◽  
Vol 77 (2) ◽  
pp. 562-570 ◽  
Author(s):  
Kathleen Mulligan ◽  
Jong-Nam Kim ◽  
Helen Sherk

Mulligan, Kathleen, Jong-Nam Kim, and Helen Sherk. Simulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli. J. Neurophysiol. 77: 562–570, 1997. In the preceding paper we described the responses of cells in the cat's lateral suprasylvian visual area (LS) to large-field optic flow and texture movies. To assess response properties such as direction selectivity, cells were also tested with moving bar stimuli. We expected that there would be good agreement between response properties elicited with optic flow movies and those revealed with bar stimuli. We first asked how well bar response properties predicted responsiveness to optic flow movies. There was no correlation between responsiveness to movies and the degree of end-stopping, length summation, or preference for bars that accelerated and expanded. We then considered only the 322 cells that responded to both bars and optic flow or texture movies and asked how well the strength of their response to movies could be predicted from the direction-tuning curves generated with bar stimuli. One-third of these cells responded much more strongly to movies than could be predicted from their direction-tuning curves. Generally, such cells were rather well tuned for the direction of bar motion and preferred a direction substantially different from what they saw in optic flow movies. Optic flow movies shown in the forward direction were the most effective variety of movie for two-thirds of these cells. To see whether this outcome stemmed from differential direction tuning for bars and large multielement displays, in a second series of experiments we compared direction tuning for bars and large-field texture movies. Many cells showed substantially different direction tuning for the two kinds of stimulus: almost [Formula: see text] of 409 cells had tuning curves that overlapped each other by <50%. But only a small number of cells (<10%) responded much better to texture movies than to bars in the predominant direction of image motion in optic flow movies. This result, like that reported in the preceding paper, suggests that cells in LS respond differently to optic flow than to texture displays lacking optic flow motion cues.

2002 ◽  
Vol 19 (4) ◽  
pp. 409-419 ◽  
Author(s):  
HELEN SHERK ◽  
JONG-NAM KIM

An observer locomoting along a straight path sees a pattern of optic flow in which images move approximately radially outward from his heading point. If the observer turns, the optic flow field changes markedly because each object's image now has a component of horizontal motion added to its “optic flow” motion. We tested the responses of 326 cells in the cat's extrastriate area LS (lateral suprasylvian visual area) to movies simulating the optic flow seen during locomotion in a straight line, and during various simulated turns to the left and right. About 60% of 326 cells tested responded to optic flow simulating turns. Of most interest was a subset of cells, 15% of the total, that had “turn-selective” responses. They responded significantly better to turns in a particular direction (usually to the contralateral side) than to turns in the opposite direction or to optic flow simulating straight-ahead locomotion. For each cell, we generated a display of fronto-parallel motion with a direction and speed that matched the image motion in the preferred turn movie, as seen at the receptive-field center. Most turn-selective cells responded significantly better to their preferred turn movie than to this fronto-parallel stimulus. We examined the role of cells' selectivity for stimulus direction, speed, and acceleration in determining cell preference for particular turns. Direction preference played some role for most cells, but about a third of the cells preferred turn movies that did not reflect their direction selectivity. Other factors, including the presence of opposing motion, only rarely appeared to determine cell preferences for particular turn movies.


2005 ◽  
Vol 94 (2) ◽  
pp. 1084-1090 ◽  
Author(s):  
Anne K. Churchland ◽  
Stephen G. Lisberger

We have used antidromic activation to determine the functional discharge properties of neurons that project to the frontal pursuit area (FPA) from the medial-superior temporal visual area (MST). In awake rhesus monkeys, MST neurons were considered to be activated antidromically if they emitted action potentials at fixed, short latencies after stimulation in the FPA and if the activation passed the collision test. Antidromically activated neurons ( n = 37) and a sample of the overall population of MST neurons ( n = 110) then were studied during pursuit eye movements across a dark background and during laminar motion of a large random-dot texture and optic flow expansion and contraction during fixation. Antidromically activated neurons showed direction tuning during pursuit (25/37), during laminar image motion (21/37), or both (16/37). Of 27 neurons tested with optic flow stimuli, 14 showed tuning for optic flow expansion ( n = 10) or contraction ( n = 4). There were no statistically significant differences in the response properties of the antidromically activated and control samples. Preferred directions for pursuit and laminar image motion did not show any statistically significant biases, and the preferred directions for eye versus image motion in each sample tended to be equally divided between aligned and opposed. There were small differences between the control and antidromically activated populations in preferred speeds for laminar motion and optic flow; these might have reached statistical significance with larger samples of antidromically activated neurons. We conclude that the population of MST neurons projecting to the FPA is highly diverse and quite similar to the general population of neurons in MST.


1997 ◽  
Vol 14 (5) ◽  
pp. 879-895 ◽  
Author(s):  
Helen Sherk ◽  
Kathleen Mulligan ◽  
Jong-Nam Kim

AbstractDuring locomotion, observers respond to objects in the environment that may represent obstacles to avoid or landmarks for navigation. Although much is known about how visual cortical neurons respond to stimulus objects moving against a blank background, nothing is known about their responses when objects are embedded in optic flow fields (the patterns of motion seen during locomotion). We recorded from cells in the lateral suprasylvian visual area (LS) of the cat, an area probably analogous to area MT. In our first experiments, optic flow simulations mimicked the view of a cat trotting across a plain covered with small balls; a black bar lying on the balls served as a target object. In subsequent experiments, optic flow simulations were composed of natural elements, with target objects representing bushes, rocks, and variants of these. Cells did not respond to the target bar in the presence of optic flow backgrounds, although they did respond to it in the absence of a background. However, 273/423 cells responded to at least one of the taller, naturalistic objects embedded in optic flow simulations. These responses might represent a form of image segmentation, in that cells detected objects against a complex background. Surprisingly, the responsiveness of cells to objects in optic flow fields was not correlated with preferred direction as measured with a moving bar or whole-field texture. Because the direction of object motion was determined solely by receptive-field location, it often differed considerably from a cell's preferred direction. About a quarter of the cells responded well to objects in optic flow movies but more weakly or not at all to bars moving in the same direction as the object, suggesting that the optic flow background modified or suppressed direction selectivity.


1993 ◽  
Vol 70 (6) ◽  
pp. 2632-2646 ◽  
Author(s):  
D. R. Wylie ◽  
T. Kripalani ◽  
B. J. Frost

1. Extracellular recordings were made from 235 neurons in the vestibulocerebellum (VbC), including the flocculus (lateral VbC), nodulus (folium X), and ventral uvula (ventral folium IXc,d), of the anesthetized pigeon, in response to an optokinetic stimulus. 2. The optokinetic stimuli consisted of two black and white random-dot patterns that were back-projected onto two large tangent screens. The screens were oriented parallel to each other and placed on either side of the bird's head. The resultant stimulus covered the central 100 degrees x 100 degrees of each hemifield. The directional tuning characteristics of each unit were assessed by moving the largefield stimulus in 12 different directions, 30 degrees apart. The directional tuning curves were performed monocularly or binocularly. The binocular directional tuning curves were performed with the direction of motion the same in both eyes (in-phase; e.g., ipsi = upward, contra = upward) or with the direction of motion opposite in either eye (antiphase; e.g., ipsi = upward, contra = downward). 3. Mossy fiber units (n = 17) found throughout folia IXa,b and IXc,d had monocular receptive fields and exhibited direction selectivity in response to stimulation of either the ipsilateral (n = 12) or contralateral (n = 5) eye. None had binocular receptive fields. 4. The complex spike (CS) activity of 218 Purkinje cells in folia IXc,d and X exhibited direction selectivity in response to the large-field visual stimulus moving in one or both visual fields. Ninety-one percent of the cells had binocular receptive fields that could be classified into four groups: descent neurons (n = 112) preferred upward motion in both eyes; ascent neurons (n = 14) preferred downward motion in both eyes; roll neurons (n = 33) preferred upward and downward motion in the ipsilateral and contralateral eyes, respectively; and yaw neurons (n = 40) preferred forward and backward motion in the ipsilateral and contralateral eyes, respectively. Within all groups, most neurons (70%) showed an ipsilateral dominance. 5. For most binocular neurons (91%), the maximum depth of modulation occurred with simultaneous stimulation of both eyes, compared with monocular stimulation of the dominant eye alone. For the translation neurons (descent and ascent), binocular inphase stimulation produced the maximum depth of modulation, whereas for the rotation neurons (roll and yaw), binocular antiphase stimulation produced the maximum depth of modulation. 6. There was a clear functional segregation of the translation and rotation neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 81 (1) ◽  
pp. 267-276 ◽  
Author(s):  
Douglas R. W. Wylie ◽  
Barrie J. Frost

Wylie, Douglas R. W. and Barrie J. Frost. Responses of Neurons in the nucleus of the basal optic root to translational and rotational flowfields. J. Neurophysiol. 81: 267–276, 1999. The nucleus of the basal optic root (nBOR) receives direct input from the contralateral retina and is the first step in a pathway dedicated to the analysis of optic flowfields resulting from self-motion. Previous studies have shown that most nBOR neurons exhibit direction selectivity in response to large-field stimuli moving in the contralateral hemifield, but a subpopulation of nBOR neurons has binocular receptive fields. In this study, the activity of binocular nBOR neurons was recorded in anesthetized pigeons in response to panoramic translational and rotational optic flow. Translational optic flow was produced by the “translator” projector described in the companion paper, and rotational optic flow was produced by a “planetarium projector” described by Wylie and Frost. The axis of rotation or translation could be positioned to any orientation in three-dimensional space. We recorded from 37 cells, most of which exhibited a strong contralateral dominance. Most of these cells were located in the caudal and dorsal aspects of the nBOR complex and many were localized to the subnucleus nBOR dorsalis. Other units were located outside the boundaries of the nBOR complex in the adjacent area ventralis of Tsai or mesencephalic reticular formation. Six cells responded best to rotational flowfields, whereas 31 responded best to translational flowfields. Of the rotation cells, three preferred rotation about the vertical axis and three preferred horizontal axes. Of the translation cells, 3 responded best to a flowfield simulating downward translation of the bird along a vertical axis, whereas the remaining 28 responded best to flowfields resulting from translation along axes in the horizontal plane. Seventeen of these cells preferred a flowfield resulting from the animal translating backward along an axis oriented ∼45° to the midline, but the best axes of the remaining eleven cells were distributed throughout the horizontal plane with no definitive clustering. These data are compared with the responses of vestibulocerebellar Purkinje cells.


1987 ◽  
Vol 57 (4) ◽  
pp. 889-920 ◽  
Author(s):  
D. J. Felleman ◽  
D. C. Van Essen

Receptive field properties of 147 neurons histologically verified to be located in area V3 were investigated during semichronic recording from paralyzed anesthetized macaque monkeys. Quantitative analyses were made of neuron selectivities for direction, orientation, speed, binocular disparity, and color. The majority of neurons in V3 (76%) were strongly orientation selective; 40% demonstrated strong direction selectivity. Most cells were tuned for stimulus speed and almost half showed optimum responses at 16 degrees/s. The distribution of optimum speeds ranged primarily from 4 to 32 degrees/s. Several cells in V3 displayed multi-peaked orientation- and/or direction-tuning curves. These cells had two or more narrowly tuned peaks that were not co-axial. In some ways, they resemble higher-order hypercomplex cells of cat area 19 and may subserve a higher level of form or motion analysis than is seen at antecedent visual areas. Roughly half (45%) of the cells were selective for binocular disparity. Approximately half of these were tuned excitatory in that they showed weak responses when tested through either eye alone, but showed strong binocular facilitation centered on the fixation plane. The other disparity-selective cells were tuned inhibitory or asymmetric in their responses in front and behind the fixation plane. Contrary to previous reports, approximately 20% of the neurons in V3 were color selective in terms of showing a severalfold greater response to the best monochromatic wavelength compared with the worst. Color-tuning curves of the subset of color selective cells had, on average, a full bandwidth at half maximum response of 80-100 nm. A comparison of the receptive field properties of neurons in V3 to those in other areas of visual cortex suggests that V3, like MT, is well suited for the analysis of several aspects of stimulus motion. V3 may also be involved in some aspects of form analysis, particularly at low contrast levels. Comparison with area VP, a thin strip of cortex anterior to ventral V2, which was previously considered part of V3, indicates that direction selectivity is much more prevalent in V3 than in VP. Conversely, color-selective cells are the majority in VP but a minority in V3. This suggests that visual information is processed differently in the upper and lower visual fields.


1995 ◽  
Vol 12 (5) ◽  
pp. 887-894 ◽  
Author(s):  
Helen Sherk ◽  
Jong-Nam Kim ◽  
Kathleen Mulligan

AbstractIt has been proposed that one area of extrastriate cortex in the cat, the lateral suprasylvian area (LS), plays an important role in visual analysis during locomotion (Rauschecker et al., 1987). Cells in LS reportedly tend to prefer directions along a trajectory originating at the center of gaze, and passing outward through the receptive-field center. Such directions coincide with the directions of image motion in an optic flow field, the pattern seen by locomoting observers when they fixate the point towards which they are heading (Gibson, 1950). We re-examined this issue for cells in LS with receptive fields in the lower visual field. Cells recorded posterior to Horsley-Clarke A2 showed a clear correlation between preferred direction and receptive-field location, but not that predicted: preferred directions were generally orthogonal to “optic flow” directions. Since these cells were all located posterior to those in studies showing a bias for “optic flow” directions, we hypothesized that there are two cell populations within LS, an anterior population that tends to prefer radial-outward directions, and a posterior population that tends to prefer directions orthogonal to radial. Data from earlier mapping experiments (Sherk & Mulligan, 1993) supported this idea.


2010 ◽  
Vol 103 (6) ◽  
pp. 3123-3138 ◽  
Author(s):  
James M. G. Tsui ◽  
J. Nicholas Hunter ◽  
Richard T. Born ◽  
Christopher C. Pack

Neurons in the primate extrastriate cortex are highly selective for complex stimulus features such as faces, objects, and motion patterns. One explanation for this selectivity is that neurons in these areas carry out sophisticated computations on the outputs of lower-level areas such as primary visual cortex (V1), where neuronal selectivity is often modeled in terms of linear spatiotemporal filters. However, it has long been known that such simple V1 models are incomplete because they fail to capture important nonlinearities that can substantially alter neuronal selectivity for specific stimulus features. Thus a key step in understanding the function of higher cortical areas is the development of realistic models of their V1 inputs. We have addressed this issue by constructing a computational model of the V1 neurons that provide the strongest input to extrastriate cortical middle temporal (MT) area. We find that a modest elaboration to the standard model of V1 direction selectivity generates model neurons with strong end-stopping, a property that is also found in the V1 layers that provide input to MT. With this computational feature in place, the seemingly complex properties of MT neurons can be simulated by assuming that they perform a simple nonlinear summation of their inputs. The resulting model, which has a very small number of free parameters, can simulate many of the diverse properties of MT neurons. In particular, we simulate the invariance of MT tuning curves to the orientation and length of tilted bar stimuli, as well as the accompanying temporal dynamics. We also show how this property relates to the continuum from component to pattern selectivity observed when MT neurons are tested with plaids. Finally, we confirm several key predictions of the model by recording from MT neurons in the alert macaque monkey. Overall our results demonstrate that many of the seemingly complex computations carried out by high-level cortical neurons can in principle be understood by examining the properties of their inputs.


1991 ◽  
Vol 65 (6) ◽  
pp. 1329-1345 ◽  
Author(s):  
C. J. Duffy ◽  
R. H. Wurtz

1. Neurons in the dorsomedial region of the medial superior temporal area (MSTd) have large receptive fields that include the fovea, are directionally selective for moving visual stimuli, prefer the motion of large fields to small spots, and respond to rotating and expanding patterns of motion as well as frontal parallel planar motion. These characteristics suggested that these neurons might contribute to the analysis of the large-field optic flow stimulation generated as an observer moves through the visual environment. 2. We tested the response of MSTd neurons in two awake monkeys by systematically presenting a set of translational and rotational stimuli to each neuron. These 100 X 100 degrees stimuli were the motion components from which all optic flow fields are derived. 3. In 220 single neurons we found 23% that responded primarily to one component of motion (planar, circular, or radial), 34% that responded to two components (planocircular or planoradial, but never circuloradial), and 29% that responded to all three components. 4. The number of stimulus components to which a neuron responded was unrelated to the size or eccentricity of its receptive field. 5. Triple-, double-, and single-component neurons varied widely in the strength of their responses to the preferred components. Grouping these neurons together revealed that they did not form discrete classes but rather a continuum of response selectivity. 6. This continuum was apparent in other response characteristics. Direction selectivity was weakest in triple-component neurons, strongest in single-component neurons. Significant inhibitory responses were less frequent in triple-component neurons than in single-component neurons. 7. There was some indication that the neurons of similar component classes occupied adjacent regions within MSTd, but all combinations of component and direction selectivity were occasionally found in immediate juxtaposition. 8. Experiments on a subset of neurons showed that the speed of motion, the dot density, and the number of different speed planes in the display had little influence on these responses. 9. We conclude that the selective responses of many MSTd neurons to the rotational and translational components of optic flow make these neurons reasonable candidates for contributing to the analysis of optic flow fields.


Sign in / Sign up

Export Citation Format

Share Document