parallel motion
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 23)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joan López-Moliner ◽  
Cristina de la Malla

AbstractWe often need to interact with targets that move along arbitrary trajectories in the 3D scene. In these situations, information of parameters like speed, time-to-contact, or motion direction is required to solve a broad class of timing tasks (e.g., shooting, or interception). There is a large body of literature addressing how we estimate different parameters when objects move both in the fronto-parallel plane and in depth. However, we do not know to which extent the timing of interceptive actions is affected when motion-in-depth (MID) is involved. Unlike previous studies that have looked at the timing of interceptive actions using constant distances and fronto-parallel motion, we here use immersive virtual reality to look at how differences in the above-mentioned variables influence timing errors in a shooting task performed in a 3D environment. Participants had to shoot at targets that moved following different angles of approach with respect to the observer when those reached designated shooting locations. We recorded the shooting time, the temporal and spatial errors and the head’s position and orientation in two conditions that differed in the interval between the shot and the interception of the target’s path. Results show a consistent change in the temporal error across approaching angles: the larger the angle, the earlier the error. Interestingly, we also found different error patterns within a given angle that depended on whether participants tracked the whole target’s trajectory or only its end-point. These differences had larger impact when the target moved in depth and are consistent with underestimating motion-in-depth in the periphery. We conclude that the strategy participants use to track the target’s trajectory interacts with MID and affects timing performance.


2021 ◽  
Vol 20 ◽  
pp. 232-243
Author(s):  
Maxim V. Shamolin

Proposed activity presents next stage of the study of the problem of the plane-parallel motion of a rigid body interacting with a resistant medium through the frontal plane part of its external surface. Under constructing of the force acting of medium, we use the information on the properties of medium streamline fl w around in quasistationarity conditions (for instance, on the homogeneous circular cylinder input into the water). The medium motion is not studied, and we consider such problem in which the characteristic time of the body motion with respect to its center of masses is comparable with the characteristic time of motion of the center of masses itself.


2021 ◽  
Author(s):  
Joan López-Moliner ◽  
Cristina Malla

Abstract We often need to interact with targets that move along arbitrary trajectories in the 3D scene. In these situations, information of parameters like speed, time-to-contact, or motion direction is required to solve a broad class of timing tasks (e.g., shooting, or interception). There is a large body of literature addressing how we estimate different parameters when objects move both in the fronto-parallel plane and in depth. However, we do not know to which extent the timing of interceptive actions is affected when there is MID involved. Unlike previous studies that have looked at the timing of interceptive actions using constant distances and fronto-parallel motion, we here use immersive virtual reality to look at how differences in the above-mentioned variables influence timing errors in a shooting task performed in a 3D environment. Participants had to shoot at targets that moved following different angles of approach with respect to the observer when those reached designated shooting locations. We recorded the shooting time, the temporal and spatial errors and the head’s position and orientation in two conditions that differed in the interval between the shot and the interception of the target’s path. Results show a consistent change of the temporal error across approaching angles: the larger the angle, the earlier the error. Interestingly, we also found different error patterns within a given angle that depended on whether participants tracked the whole target’s trajectory or only its end-point. These differences had larger impact when the target moved in depth and are consistent with underestimating motion-in-depth in the periphery. We conclude that the strategy participants use to track the trajectory interacts with MID and affects timing performance.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Dipankar Barman ◽  
Subhajit Barman ◽  
Bibhas Ranjan Majhi

Abstract We investigate the effects of field temperature T(f) on the entanglement harvesting between two uniformly accelerated detectors. For their parallel motion, the thermal nature of fields does not produce any entanglement, and therefore, the outcome is the same as the non-thermal situation. On the contrary, T(f) affects entanglement harvesting when the detectors are in anti-parallel motion, i.e., when detectors A and B are in the right and left Rindler wedges, respectively. While for T(f) = 0 entanglement harvesting is possible for all values of A’s acceleration aA, in the presence of temperature, it is possible only within a narrow range of aA. In (1 + 1) dimensions, the range starts from specific values and extends to infinity, and as we increase T(f), the minimum required value of aA for entanglement harvesting increases. Moreover, above a critical value aA = ac harvesting increases as we increase T(f), which is just opposite to the accelerations below it. There are several critical values in (1 + 3) dimensions when they are in different accelerations. Contrary to the single range in (1 + 1) dimensions, here harvesting is possible within several discrete ranges of aA. Interestingly, for equal accelerations, one has a single critical point, with nature quite similar to (1 + 1) dimensional results. We also discuss the dependence of mutual information among these detectors on aA and T(f).


2020 ◽  
Vol 14 (3) ◽  
pp. 7269-7281
Author(s):  
El Amin Azzouz ◽  
Samir Houat

The two-dimensional asymmetrical flow in a two-sided lid-driven square cavity is numerically analyzed by the finite volume method (FVM). The top and bottom walls slide in parallel and antiparallel motions with various velocity ratio (UT/Ub=λ) where |λ|=2, 4, 8, and 10. In this study, the Reynolds number Re1 = 200, 400, 800 and 1000 is applied for the upper side and Re2 = 100 constant on the lower side. The numerical results are presented in terms of streamlines, vorticity contours and velocity profiles. These results reveal the effect of varying the velocity ratio and consequently the Reynolds ratio on the flow behaviour and fluid characteristics inside the cavity. Unlike conventional symmetrical driven flows, asymmetrical flow patterns and velocity distributions distinct the bulk of the cavity with the rising Reynolds ratio. For λ>2, in addition to the main vortex, the parallel motion of the walls induces two secondary vortices near the bottom cavity corners. however, the antiparallel motion generates two secondary vortices on the bottom right corner. The parallel flow proves affected considerably compared to the antiparallel flow.


2020 ◽  
Vol 14 (4) ◽  
pp. 96-99
Author(s):  
Sergey Yakhin ◽  
Il'gam Masalimov ◽  
Marat Nafikov ◽  
Ramis Mardanov

The kinematics of plane-parallel motion of a wheat or rye grain when moving in an inclined position in a scraper conveyor is considered. A kinematic diagram of the plane-parallel motion of the grain in the scraper conveyor was compiled, the position of the instantaneous center of the flat figure was determined, and options for the movement of grain in an inclined position at various possible positions of instantaneous center were considered. The profile of the grains is outlined by an elliptical curve. The point of contact of the elliptical profile of the caryopsis with the scraper makes a complex motion, while the horizontal speed of the scraper is portable for it, the sliding speed on the surface of the scraper is relative. The speed of the touch point of the grain with the pan is horizontal. For six possible positions of the instantaneous center, the directions of the velocities of the points of contact of the grains and the friction forces acting in them are determined. Grains of wheat or rye, moved in a scraper conveyor, in some cases can make plane-parallel movement. The point of contact of the elliptical profile of the caryopsis with the scraper makes a complex motion, while the horizontal speed of the scraper is portable for it, the sliding speed on the surface of the scraper is relative. The speed of the touch point 2 of the grain with the pan is horizontal.


Vision ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 20
Author(s):  
Seung Hyun Min ◽  
Alexandre Reynaud ◽  
Robert F. Hess

The Pulfrich effect is a stereo-motion phenomenon. When the two eyes are presented with visual targets moving in fronto-parallel motion at different luminances or contrasts, the perception is of a target moving-in-depth. It is thought that this percept of motion-in-depth occurs because lower luminance or contrast delays the speed of visual processing. Spatial properties of an image such as spatial frequency and size have also been shown to influence the speed of visual processing. In this study, we use a paradigm to measure interocular delay based on the Pulfrich effect where a structure-from-motion defined cylinder, composed of Gabor elements displayed at different interocular phases, rotates in depth. This allows us to measure any relative interocular processing delay while independently manipulating the spatial frequency and size of the micro elements (i.e., Gabor patches). We show that interocular spatial frequency differences, but not interocular size differences of image features, produce interocular processing delays.


Sign in / Sign up

Export Citation Format

Share Document