Neural Selectivity and Tuning for Sinusoidal Frequency Modulations in the Inferior Colliculus of the Big Brown Bat, Eptesicus fuscus

1997 ◽  
Vol 77 (3) ◽  
pp. 1595-1605 ◽  
Author(s):  
John H. Casseday ◽  
Ellen Covey ◽  
Benedikt Grothe

Casseday, John H., Ellen Covey, and Benedikt Grothe. Neural selectivity and tuning for sinusoidal frequency modulations in the inferior colliculus of the big brown bat, Eptesicus fuscus. J. Neurophysiol. 77: 1595–1605, 1997. Most communication sounds and most echolocation sounds, including those used by the big brown bat ( Eptesicus fuscus), contain frequency-modulated (FM) components, including cyclical FM. Because previous studies have shown that some neurons in the inferior colliculus (IC) of this bat respond to linear FM sweeps but not to pure tones or noise, we asked whether these or other neurons are specialized for conveying information about cyclical FM signals. In unanesthetized bats, we tested the response of 116 neurons in the IC to pure tones, noise with various bandwidths, single linear FM sweeps, sinusoidally amplitude-modulated signals, and sinusoidally frequency-modulated (SFM) signals. With the use of these stimuli, 20 neurons (17%) responded only to SFM, and 10 (9%) responded best to SFM but also responded to one other test stimulus. We refer to the total 26% of neurons that responded best to SFM as SFM-selective neurons. Fifty-nine neurons (51%) responded about equally well to SFM and other stimuli, and 27 (23%) did not respond to SFM but did respond to other stimuli. Most SFM-selective neurons responded to a limited range of modulation rates and a limited range of modulation depths. The range of modulationrates over which individual neurons responded was 5–170 Hz( n = 20). Thus SFM-selective neurons respond to low modulation rates. The depths of modulations to which the neurons responded ranged from ±0.4 to ±19 kHz ( n = 15). Half of the SFM-selective neurons did not respond to the first cycle of SFM. This finding suggests that the mechanism for selective response to SFM involves neural delays and coincidence detectors in which the response to one part of the SFM cycle coincides in time either with the response to a later part of the SFM cycle or with the response to the first part of the next cycle. The SFM-selective neurons in the IC responded to a lower and more limited range of SFM rates than do neurons in the nuclei of the lateral lemniscus of this bat. Because the FM components of biological sounds usually have low rates of modulation, we suggest that the tuning of these neurons is related to biologically important sound parameters. The tuning could be used to detect FM in echolocation signals, modulations in high-frequency sounds that are generated by wing beats of some beetles, or social communication sounds of Eptesicus.

2007 ◽  
Vol 98 (3) ◽  
pp. 1364-1373 ◽  
Author(s):  
Qi Yue ◽  
John H. Casseday ◽  
Ellen Covey

Most animal vocalizations, including echolocation signals used by bats, contain frequency-modulated (FM) components. Previous studies have described a class of neurons in the inferior colliculus (IC) of the big brown bat that respond exclusively to sinusoidally frequency modulated (SFM) signals and fail to respond to pure tones, noise, amplitude-modulated tones, or single FM sweeps. The aims of this study were to further characterize these neurons' response properties and to determine whether they are localized within a specific area of the IC. We recorded extracellularly from 214 neurons throughout the IC. Of these, 47 (22%) responded exclusively to SFM. SFM-selective cells were tuned to relatively low carrier frequencies (9–50 kHz), low modulation rates (20–210 Hz), and shallow modulation depths (3–10 kHz). Most had extremely low thresholds, with an average of 16.5 ± 7.6 dB SPL, and 89% had upper thresholds and closed response areas. For SFM-selective cells with spontaneous activity, the spontaneous activity was eliminated when sound amplitude exceeded their upper threshold and resumed after the stimulus was over. These findings suggest that SFM-selective cells receive low-threshold excitatory inputs and high-threshold inhibitory inputs. SFM-selective cells were clustered in the rostrodorsal part of the IC. Within this area, best modulation rate appeared to be correlated with best carrier frequency and depth within the IC.


1993 ◽  
Vol 70 (1) ◽  
pp. 64-80 ◽  
Author(s):  
R. Batra ◽  
S. Kuwada ◽  
T. R. Stanford

1. Localization of sounds has traditionally been considered to be performed by a duplex mechanism utilizing interaural temporal differences (ITDs) at low frequencies and interaural intensity differences at higher frequencies. More recently, it has been found that listeners can detect ITDs at high frequencies if the amplitude of the sound varies and an ITD is present in the envelope. Here we report the responses of neurons in the inferior colliculi of unanesthetized rabbits to ITDs of the envelopes of sinusoidally amplitude-modulated (SAM) tones. 2. Neurons were studied extracellularly with glass-coated Pt-Ir or Pt-W microelectrodes. Their sensitivity to ITDs in the envelopes of high-frequency sounds (> or = 2 kHz) was assessed using SAM tones that were presented binaurally. The tones at the two ears had the same carrier frequency but modulation frequencies that differed by 1 Hz. This caused a cyclic variation in the ITD produced by the envelope. In this "binaural SAM" stimulus, the carriers caused no ITD because they were in phase. In addition to the binaural SAM stimulus, pure tones were used to investigate responses to ipsilateral and contralateral stimulation and the nature of the interaction during binaural stimulation. 3. Neurons tended to display one of two kinds of sensitivity to ITDs. Some neurons discharged maximally at the same ITD at all modulation frequencies > 250 Hz (peak-type neurons), whereas others were maximally suppressed at the same ITD (trough-type neurons). 4. At these higher modulation frequencies (> 250 Hz), the characteristic delays that neurons exhibited tended to lie within the range that a rabbit might normally encounter (+/- 300 microseconds). The peak-type neurons favored ipsilateral delays, which correspond to sounds in the contralateral sound field. The trough-type neurons showed no such preference. 5. The preference of peak-type neurons for a particular delay was sharper than that of trough-type neurons and was comparable to that observed in neurons of the inferior colliculus that are sensitive to delays of low-frequency pure tones. 6. At lower modulation frequencies (< 150 Hz) characteristic delays often lay beyond +/- 300 microseconds. 7. Increasing the ipsilateral intensity tended to shift the preferred delay ipsilaterally at lower (< 250 Hz), but not at higher, modulation frequencies. 8. When tested with pure tones, a substantial number of peak-type neurons were found to be excited by contralateral stimulation but inhibited by ipsilateral stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)


2018 ◽  
Vol 120 (3) ◽  
pp. 985-997 ◽  
Author(s):  
James A. Morrison ◽  
Roberto Valdizón-Rodríguez ◽  
Daniel Goldreich ◽  
Paul A. Faure

Responses of auditory duration-tuned neurons (DTNs) are selective for stimulus duration. We used single-unit extracellular recording to investigate how the inferior colliculus (IC) encodes frequency-modulated (FM) sweeps in the big brown bat. It was unclear whether the responses of so-called “FM DTNs” encode signal duration, like classic pure-tone DTNs, or the FM sweep rate. Most FM cells had spiking responses selective for downward FM sweeps. We presented cells with linear FM sweeps whose center frequency (CEF) was set to the best excitatory frequency and whose bandwidth (BW) maximized the spike count. With these baseline parameters, we stimulated cells with linear FM sweeps randomly varied in duration to measure the range of excitatory FM durations and/or sweep rates. To separate FM rate and FM duration tuning, we doubled (and halved) the BW of the baseline FM stimulus while keeping the CEF constant and then recollected each cell’s FM duration tuning curve. If the cell was tuned to FM duration, then the best duration (or range of excitatory durations) should remain constant despite changes in signal BW; however, if the cell was tuned to the FM rate, then the best duration should covary with the same FM rate at each BW. A Bayesian model comparison revealed that the majority of neurons were tuned to the FM sweep rate, although a few cells showed tuning for FM duration. We conclude that the dominant parameter for temporal tuning of FM neurons in the IC is FM sweep rate and not FM duration. NEW & NOTEWORTHY Reports of inferior colliculus neurons with response selectivity to the duration of frequency-modulated (FM) stimuli exist, yet it remains unclear whether such cells are tuned to the FM duration or the FM sweep rate. To disambiguate these hypotheses, we presented neurons with variable-duration FM signals that were systematically manipulated in bandwidth. A Bayesian model comparison revealed that most temporally selective midbrain cells were tuned to the FM sweep rate and not the FM duration.


2005 ◽  
Vol 94 (3) ◽  
pp. 1869-1878 ◽  
Author(s):  
Thane Fremouw ◽  
Paul A. Faure ◽  
John H. Casseday ◽  
Ellen Covey

At and above the level of the inferior colliculus (IC), some neurons respond maximally to a limited range of sound durations, with little or no excitatory response to durations outside of this range. Such neurons have been termed “duration tuned” or “duration selective.” In this study we examined the effects of varying signal amplitude on best duration, width of tuning, and first spike latency of duration tuned neurons in the IC of the big brown bat, Eptesicus fuscus. Response areas as a function of stimulus duration and intensity took a variety of forms, including open (V-shaped), narrow and level tolerant (U-shaped), or closed (O-shaped). The majority (82%) of duration tuned neurons had narrow U-shaped or O-shaped duration response areas. Those with narrow U-shaped response areas retained their duration tuning across a broad dynamic range, ≤50 dB above threshold, whereas those with O-shaped response areas were narrowly tuned to both stimulus duration and amplitude. For about one-half (55%) of the neurons with either a U- or O-shaped response areas, best duration (BD) changed by <1 ms across the range of suprathreshold amplitudes tested. Changes in BD most often took the form of a shift to slightly shorter durations as stimulus level increased. For the majority (65%) of U- and O-shaped neurons, 50% width of duration tuning changed by <2 ms with increasing amplitude. Latency of response at BD remained stable across changes in sound level, suggesting that the relative strengths of excitatory and inhibitory inputs to duration tuned neurons remain in balance over a wide dynamic range of sound pressure levels.


Sign in / Sign up

Export Citation Format

Share Document