scholarly journals Sacculocollic Reflex Arcs in Cats

1997 ◽  
Vol 77 (6) ◽  
pp. 3003-3012 ◽  
Author(s):  
Y. Uchino ◽  
H. Sato ◽  
M. Sasaki ◽  
M. Imagawa ◽  
H. Ikegami ◽  
...  

Uchino, Y., H. Sato, M. Sasaki, M. Imagawa, H. Ikegami, N. Isu, and W. Graf. Sacculocollic reflex arcs in cats. J. Neurophysiol. 77: 3003–3012, 1997. Neuronal connections and pathways underlying sacculocollic reflexes were studied by intracellular recordings from neck extensor and flexor motoneurons in decerebrate cat. Bipolar electrodes were placed within the left saccular nerve, whereas other branches of the vestibular nerve were removed in the inner ear. To prevent spread of stimulus current to other branches of the vestibular nerve, the saccular nerve and the electrodes were covered with warm semisolid paraffin-Vaseline mixture. Saccular nerve stimulation evoked disynaptic (1.8–3.0 ms) excitatory postsynaptic potentials (EPSPs) in ipsilateral neck extensor motoneurons and di- or trisynaptic (1.8–4.0 ms) EPSPs in contralateral neck extensor motoneurons, and di- and trisynaptic (1.7–3.6 ms) inhibitory postsynaptic potentials (IPSPs) in ipsilateral neck flexor motoneurons and trisynaptic (2.7–4.0 ms) IPSPs in contralateral neck flexor motoneurons. Ipsilateral inputs were about twice as strong as contralateral ones to both extensor and flexor motoneurons. To determine the pathways mediating this connectivity, the lateral part of the spinal cord containing the ipsilateral lateral vestibulospinal tract (i-LVST) or the central part of the spinal cord containing the medial vestibulospinal tracts (MVSTs) and possibly reticulospinal fibers (RSTs) were transected at the caudal end of the C1 segment. Subsequent renewed intracellular recordings following sacculus nerve stimulation indicated that the pathway from the saccular nerve to the ipsilateral neck extensor motoneurons projects though the i-LVST, whereas the pathways to the contralateral neck extensors and to the bilateral neck flexor motoneurons descend in the MVSTs/RSTs. Our data show that sacculo-neck reflex connections display a qualitatively bilaterally symmetrical innervation pattern with excitatory connections to both neck extensor motoneuron pools, and inhibitory connections to both neck flexor motoneuron pools. This bilateral organization contrasts with the unilateral innervation scheme of the utriculus system. These results suggest a different symmetry plane along which sacculus postural reflexes are organized, thus supplementing the reference planes of the utriculus system and allowing the gravistatic system to represent all three translational spatial degrees of freedom. We furthermore suggest that the sacculocollic reflex plays an important role in maintaining the relative position of the head and the body against the vertical linear acceleration of gravity.

1990 ◽  
Vol 63 (3) ◽  
pp. 424-438 ◽  
Author(s):  
Z. Bing ◽  
L. Villanueva ◽  
D. Le Bars

1. Recordings were made from neurons in the left medullary subnucleus reticularis dorsalis (SRD) of anesthetized rats. Two populations of neurons were recorded: neurons with total nociceptive convergence (TNC), which gave responses to A delta- and C-fiber activation from the entire body after percutaneous electrical stimulation, and neurons with partial nociceptive convergence (PNC), which responded to identical stimuli with an A delta-peak regardless of which part of the body was stimulated and with a C-fiber peak of activation from some, mainly contralateral, parts of the body. 2. The effects of various, acute, transverse sections of the cervical (C4-C5) spinal cord on the A delta- and C-fiber-evoked responses were investigated by building poststimulus histograms (PSHs) after 50 trials of supramaximal percutaneous electrical stimulation of the extremity of either hindpaw (2-ms duration; 3 times threshold for C-fiber responses), before and 30-40 min after making the spinal lesion. 3. In the case of TNC neurons, hemisections of the left cervical cord blocked the responses elicited from the right hindpaw and slightly, but not significantly, diminished those evoked from the left hindpaw. Conversely, hemisections of the right cervical cord abolished TNC responses elicited from the left hindpaw without significantly affecting the responses elicited from the right hindpaw. 4. Lesioning the dorsal columns or the left dorsolateral funiculus was found not to affect the TNC neuronal responses elicited from either hindpaw. By contrast, lesioning the left lateral funiculus or the most lateral part of the ventrolateral funiculus, respectively, reduced and blocked the responses elicited from the right hindpaw without affecting those evoked from the left hindpaw. 5. After lesions that included the most lateral parts of the left ventral funiculus, PNC neuronal responses elicited from the right hindpaw were also abolished, whereas those elicited from the left hindpaw remained unchanged. 6. We conclude that the signals responsible for the activation of SRD neurons travel principally in the lateral parts of the ventrolateral quadrant, a region that classically has been implicated in the transmission of noxious information. Both a crossed and a double-crossed pathway are involved in this process. The postsynaptic fibers of the dorsal columns and the spinocervical and spinomesencephalic tracts do not appear to convey signals that activate SRD neurons. 7. The findings also suggest that lamina I nociceptive specific neurons, the axons of which travel within the dorsolateral funiculus, do not contribute very much to the activation of SRD neurons.


1987 ◽  
Vol 58 (4) ◽  
pp. 719-738 ◽  
Author(s):  
S. M. Highstein ◽  
J. M. Goldberg ◽  
A. K. Moschovakis ◽  
C. Fernandez

1. Intracellular recordings were made from secondary neurons in the vestibular nuclei of barbiturate-anesthetized squirrel monkeys. Monosynaptic excitatory postsynaptic potentials (EPSPs) evoked by stimulation of the ipsilateral vestibular nerve (Vi) were measured. An electrophysiological paradigm, described in the preceding paper (26), was used to determine the proportion of irregularly (I) and regularly (R) discharging Vi afferents making direct connections with individual secondary neurons. The results were expressed as a % I index, an estimate for each neuron of the percentage of the total Vi monosynaptic input that was derived from I afferents. The secondary neurons were also classified as I, R, or M cells, depending on whether they received their direct Vi inputs predominantly from I or R afferents or else from a mixture (M) of both kinds of Vi fibers. The neurons were located in the superior vestibular nucleus (SVN) or in the rostral parts of the medical or lateral (LVN) vestibular nuclei. 2. Antidromic activation or reconstruction of axonal trajectories after intrasomatic injection of horseradish peroxidase (HRP) was used to identify three classes of secondary neurons in terms of their output pathways: 1) cerebellar-projecting (Fl) cells innervating the flocculus (n = 26); 2) rostrally projecting (Oc) cells whose axons ascended toward the oculomotor (IIIrd) nucleus (n = 27); and 3) caudally projecting (Sp) cells with axons descending toward the spinal cord (n = 13). Two additional neurons, out of 21 tested, could be antidromically activated both from the level of the IIIrd nucleus and from the spinal cord. 3. The Vi inputs to the various classes of relay neurons differed. As a class, Oc neurons received the most regular inputs. Sp neurons had more irregular inputs. Fl neurons were heterogeneous with similar numbers of R, M, and I neurons. The mean values (+/- SD) of the % I index for the Oc, Fl, and Sp neurons were 34.7 +/- 24.7, 51.9 +/- 30.4, and 61.8 +/- 18.0%, respectively. Only the Oc neurons had a % I index that was similar to the proportion of I afferents (34%) in the vestibular nerve (cf. Ref. 26). 4. The commissural inputs from the contralateral vestibular nerve (Vc) also differed for the three projection classes. Commissural inhibition was most common in Fl cells: 22/25 (88%) of the neurons had Vc inhibitory postsynaptic potentials (IPSPs) and 1/25 (4%) had a Vc EPSP. In contrast, Vc inputs were only observed in approximately half the Oc and Sp neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1992 ◽  
Vol 67 (6) ◽  
pp. 1695-1697 ◽  
Author(s):  
P. S. Bolton ◽  
K. Endo ◽  
T. Goto ◽  
M. Imagawa ◽  
M. Sasaki ◽  
...  

1. We studied connections between the utricular (UT) nerve and dorsal neck motoneurons in decerebrate cats. Electrodes were fixed in place on the UT nerve under visual observation; the other branches of the vestibular nerve were transected. 2. The N1 field potential evoked by UT nerve stimulation was recorded in the vestibular nuclei at the start of each experiment. The potential typically grew until it reached a plateau. Stimulus spread (if any) to the central ends of other nerve branches was revealed by an additional increase in N1 amplitude after the plateau was reached. 3. We recorded intracellularly from 55 motoneurons in C1-C3. Some were identified as having axons in the dorsal rami, which innervate dorsal neck muscles. Others projected in nerves that were not available for stimulation. 4. UT nerve stimulation evoked synaptic potentials in essentially all motoneurons studied. The predominant pattern consisted of disynaptic excitatory postsynaptic potentials in ipsilateral motoneurons and inhibitory postsynaptic potentials that were at least trisynaptic in contralateral motoneurons. 5. The results demonstrate the presence of short-latency connections between the utricular nerve and dorsal neck motoneurons. The functional role of this pathway remains to be investigated.


2000 ◽  
Vol 84 (5) ◽  
pp. 2514-2528 ◽  
Author(s):  
Alexander L. Babalian ◽  
Pierre-Paul Vidal

The isolated whole brain (IWB) preparation of the guinea pig was used to investigate the floccular modulation of vestibular-evoked responses in abducens and oculomotor nerves and abducens nucleus; for identification of flocculus target neurons (FTNs) in the vestibular nuclei and intracellular study of some of their physiological properties; to search for possible flocculus-dependent plasticity at the FTN level by pairing of vestibular nerve and floccular stimulations; and to study the possibility of induction of long-term depression (LTD) in Purkinje cells by paired stimulation of the inferior olive and vestibular nerve. Stimulation of the flocculus had only effects on responses evoked from the ipsilateral (with respect to the stimulated flocculus) vestibular nerve. Floccular stimulation significantly inhibited the vestibular-evoked discharges in oculomotor nerves on both sides and the inhibitory field potential in the ipsilateral abducens nucleus while the excitatory responses in the contralateral abducens nerve and nucleus were free from such inhibition. Eleven second-order vestibular neurons were found to receive a short-latency monosynaptic inhibitory input from the flocculus and were thus characterized as FTNs. Monosynaptic inhibitory postsynaptic potentials from the flocculus were bicuculline sensitive, suggesting a GABAA-ergic transmission from Purkinje cells to FTNs. Two of recorded FTNs could be identified as vestibulospinal neurons by their antidromic activation from the cervical segments of the spinal cord. Several pairing paradigms were investigated in which stimulation of the flocculus could precede, coincide with, or follow the vestibular nerve stimulation. None of them led to long-term modification of responses in the abducens nucleus or oculomotor nerve evoked by activation of vestibular afferents. On the other hand, pairing of the inferior olive and vestibular nerve stimulation resulted in approximately a 30% reduction of excitatory postsynaptic potentials evoked in Purkinje cells by the vestibular nerve stimulation. This reduction was pairing-specific and lasted throughout the entire recording time of the neurons. Thus in the IWB preparation, we were able to induce a LTD in Purkinje cells, but we failed to detect traces of flocculus-dependent plasticity at the level of FTNs in vestibular nuclei. Although these data cannot rule out the possibility of synaptic modifications in FTNs and/or at other brain stem sites under different experimental conditions, they are in favor of the hypothesis that the LTD in the flocculus could be the essential mechanism of cellular plasticity in the vestibuloocular pathways.


1980 ◽  
Vol 84 (1) ◽  
pp. 119-136
Author(s):  
D. Mellon ◽  
J. E. Treherne ◽  
N. J. Lane ◽  
J. B. Harrison ◽  
C. K. Langley

Intracellular recordings demonstrated a transfer of impulses between the paired giant axons of Sabella, apparently along narrow axonal processes contained within the paired commissures which link the nerve cords in each segment of the body. This transfer appears not to be achieved by chemical transmission, as has been previously supposed. This is indicated by the spread of depolarizing and hyperpolarizing voltage changes between the giant axons, the lack of effects of changes in the concentrations of external divalent cations on impulse transmission and by the effects of hyperpolarization in reducing the amplitude of the depolarizing potential which precedes the action potentials in the follower axon. The ten-to-one attenuation of electronic potentials between the giant axons argues against the possibility of an exclusively passive spread of potential along the axonal processes which link the axons. Observation of impulse traffic within the nerve cord commissures indicates, on the other hand, that transmission is achieved by conduction of action potentials along the axonal processes which link the giant axons. At least four pairs of intact commissures are necessary for inter-axonal transmission, the overall density of current injected at multiple sites on the follower axon being, it is presumed, sufficient to overcome the reduction in safety factor imposed by the geometry of the system in the region where axonal processes join the giant axons. The segmental transmission between the giant axons ensures effective synchronization of impulse traffic initiated in any region of the body and, thus, co-ordination of muscular contraction, during rapid withdrawal responses of the worm.


Sign in / Sign up

Export Citation Format

Share Document