vestibular nerve afferents
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 0)

H-INDEX

15
(FIVE YEARS 0)

2019 ◽  
Vol 39 (35) ◽  
pp. 6922-6935 ◽  
Author(s):  
Vishal Raghu ◽  
Richard Salvi ◽  
Soroush G. Sadeghi


2011 ◽  
Vol 210 (3-4) ◽  
pp. 643-649 ◽  
Author(s):  
Kyu-Sung Kim ◽  
Lloyd B. Minor ◽  
Charles C. Della Santina ◽  
David M. Lasker


2009 ◽  
Vol 102 (5) ◽  
pp. 2693-2703 ◽  
Author(s):  
Soroush G. Sadeghi ◽  
Jay M. Goldberg ◽  
Lloyd B. Minor ◽  
Kathleen E. Cullen

Mechanical occlusion (plugging) of the slender ducts of semicircular canals has been used in the clinic as well as in basic vestibular research. Here, we investigated the effect of canal plugging in two macaque monkeys on the horizontal vestibuloocular reflex (VOR) and the responses of vestibular-nerve afferents during passive head rotations. Afferent responses to active head movements were also studied. The horizontal VOR gain decreased after plugging to <0.1 for frequencies <2 Hz but rose to about 0.6 as frequency was increased to 15 Hz. Afferents innervating plugged horizontal canals had response sensitivities that increased with the frequency of passive rotations from <0.01 (spikes/s)/(°/s) at 0.5 Hz to values of about 0.2 and 0.5 (spikes/s)/(°/s) at 8 Hz for regular and irregular afferents, respectively (<50% of responses in controls). An increase in phase lead was also noted following plugging in afferent discharge, but not in the VOR. Because the phase discrepancy between the VOR and afferent discharge is much larger than that seen in control animals, this suggests that central adaptation shapes VOR dynamics following plugging. The effect of canal plugging on afferent responses can be modeled as an increase in stiffness and a reduction in the dominant time constant and gain in the transfer function describing canal dynamics. Responses were also evident during active head rotations, consistent with the frequency content of these movements. We conclude that canal plugging in macaques is effective only at frequencies <2 Hz. At higher frequencies, afferents show significant responses, with a nearly 90° phase lead, such that they encode near-rotational acceleration. Our results demonstrate that afferents innervating plugged canals respond robustly during voluntary movements, a finding that has implications for understanding the effects of canal plugging in clinical practice.





2009 ◽  
Vol 101 (2) ◽  
pp. 988-1001 ◽  
Author(s):  
Soroush G. Sadeghi ◽  
Jay M. Goldberg ◽  
Lloyd B. Minor ◽  
Kathleen E. Cullen

The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320°/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (∼10 spikes/s) than in regular afferents (∼2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50° upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition.



2009 ◽  
Vol 101 (1) ◽  
pp. 141-149 ◽  
Author(s):  
Mohsen Jamali ◽  
Soroush G. Sadeghi ◽  
Kathleen E. Cullen

The distinction between sensory inputs that are a consequence of our own actions from those that result from changes in the external world is essential for perceptual stability and accurate motor control. In this study, we investigated whether linear translations are encoded similarly during active and passive translations by the otolith system. Vestibular nerve afferents innervating the saccule or utricle were recorded in alert macaques. Single unit responses were compared during passive whole body, passive head-on-body, and active head-on-body translations (vertical, fore-aft, or lateral) to assess the relative influence of neck proprioceptive and efference copy-related signals on translational coding. The response dynamics of utricular and saccular afferents were comparable and similarly encoded head translation during passive whole body versus head-on-body translations. Furthermore, when monkeys produced active head-on-body translations with comparable dynamics, the responses of both regular and irregular afferents remained comparable to those recorded during passive movements. Our findings refute the proposal that neck proprioceptive and/or efference copy inputs coded by the efferent system function to modulate the responses of the otolith afferents during active movements. We conclude that the vestibular periphery provides faithful information about linear movements of the head in the space coordinates, regardless of whether they are self- or externally generated.



2008 ◽  
Vol 9 (3) ◽  
pp. 334-348 ◽  
Author(s):  
David M. Lasker ◽  
Gyu Cheol Han ◽  
Hong Ju Park ◽  
Lloyd B. Minor


2007 ◽  
Vol 98 (6) ◽  
pp. 3197-3205 ◽  
Author(s):  
Aizhen Yang ◽  
Timothy E. Hullar

The relationship between semicircular canal radius of curvature and afferent sensitivity has not been experimentally determined. We characterized mouse semicircular canal afferent responses to sinusoidal head rotations to facilitate interspecies and intraspecies comparisons of canal size to sensitivity. The interspecies experiment compared the horizontal canal afferent responses among animals ranging in size from mouse to rhesus monkey. The intraspecies experiment compared afferent responses from the larger anterior canal to those from the smaller horizontal canal of mice. The responses of mouse vestibular-nerve afferents showed a low- and high-frequency phase lead and high-frequency gain enhancement. Regular horizontal-canal afferents showed a sensitivity to 0.5-Hz sinusoidal rotations of 0.10 ± 0.03 (SD) spike · s−1/deg · s−1 and high-gain irregular afferents showed a sensitivity of 0.25 ± 0.11 spike · s−1/deg · s−1. The interspecies comparison showed that the sensitivity of regular afferents was related to the radius of curvature R according to the formula Gr = 0.23R − 0.09 ( r2 = 0.86) and the sensitivity of irregular afferents was related to radius according to the formula Gi = 0.32R + 0.01 ( r2 = 0.67). The intraspecies comparison showed that regularly firing anterior canal afferents were significantly more sensitive than those from the relatively smaller horizontal canal, with Gr = 0.25R. This suggests that canal radius of curvature is closely related to afferent sensitivity both among and within species. If the relationship in humans is similar to that demonstrated here, the sensitivity of their regular vestibular-nerve afferents to 0.5-Hz rotations is likely to be about 0.67 spike · s−1/deg · s−1 and of their high-gain irregular afferents about 1.06 spikes · s−1/deg · s−1.



2007 ◽  
Vol 97 (2) ◽  
pp. 1503-1514 ◽  
Author(s):  
Soroush G. Sadeghi ◽  
Lloyd B. Minor ◽  
Kathleen E. Cullen

We investigated the possible contribution of signals carried by vestibular-nerve afferents to long-term processes of vestibular compensation after unilateral labyrinthectomy. Semicircular canal afferents were recorded from the contralesional nerve in three macaque monkeys before [horizontal (HC) = 67, anterior (AC) = 66, posterior (PC) = 50] and 1–12 mo after (HC = 192, AC = 86, PC = 57) lesion. Vestibular responses were evaluated using passive sinusoidal rotations with frequencies of 0.5–15 Hz (20–80°/s) and fast whole-body rotations reaching velocities of 500°/s. Sensitivities to nonvestibular inputs were tested by: 1) comparing responses during active and passive head movements, 2) rotating the body with the head held stationary to activate neck proprioceptors, and 3) encouraging head-restrained animals to attempt to make head movements that resulted in the production of neck torques of ≤2 Nm. Mean resting discharge rate before and after the lesion did not differ for the regular, D (dimorphic)-irregular, or C (calyx)-irregular afferents. In response to passive rotations, afferents showed no change in sensitivity and phase, inhibitory cutoff, and excitatory saturation after unilateral labyrinthectomy. Moreover, head sensitivities were similar during voluntary and passive head rotations and responses were not altered by neck proprioceptive or efference copy signals before or after the lesion. The only significant change was an increase in the proportion of C-irregular units postlesion, accompanied by a decrease in the proportion of regular afferents. Taken together, our findings show that changes in response properties of the vestibular afferent population are not likely to play a major role in the long-term changes associated with compensation after unilateral labyrinthectomy.



2005 ◽  
Vol 93 (5) ◽  
pp. 2777-2786 ◽  
Author(s):  
Timothy E. Hullar ◽  
Charles C. Della Santina ◽  
Timo Hirvonen ◽  
David M. Lasker ◽  
John P. Carey ◽  
...  

Mammalian vestibular-nerve afferents innervating the semicircular canals have been divided into groups according to their discharge regularity, gain at 2-Hz rotational stimulation, and morphology. Low-gain irregular afferents terminate in calyx endings in the central crista, high-gain irregular afferents synapse more peripherally in dimorphic (bouton and calyx) endings, and regular afferents terminate in the peripheral zone as bouton-only and dimorphic endings. The response dynamics of these three groups have been described only up to 4 Hz in previous studies. Reported here are responses of chinchilla semicircular canal vestibular-nerve afferents to rotational stimuli at frequencies up to 16 Hz. The sensitivity of all afferents increased with increasing frequency with the sensitivity of low-gain irregular afferents increasing the most and matching the high-gain irregular afferents at 16 Hz. All afferents increased their phase lead with respect to stimulus velocity at higher frequencies with the highest leads in low-gain irregular afferents and the lowest in regular afferents. No attenuation of sensitivity or shift in phase consistent with the presence of a high-frequency pole over the range tested was noted. Responses were best fit with a torsion-pendulum model combined with a lead operator (τHF1s + 1)(τHF2s + 1). The discharge regularity of individual afferents was correlated to the value of each afferent's lead operator time constants. These findings suggest that low-gain irregular afferents are well suited for encoding the onset of rapid head movements, a property that would be advantageous for initiation of reflexes with short latency such as the vestibulo-ocular reflex.



Sign in / Sign up

Export Citation Format

Share Document