saccular nerve
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 0)

H-INDEX

14
(FIVE YEARS 0)

2004 ◽  
Vol 31 (3) ◽  
pp. 220-225 ◽  
Author(s):  
Fumiyuki Goto ◽  
Hui Meng ◽  
Rishu Bai ◽  
Hitoshi Sato ◽  
Midori Imagawa ◽  
...  

2003 ◽  
Vol 90 (5) ◽  
pp. 3501-3512 ◽  
Author(s):  
Hans Straka ◽  
Stefan Holler ◽  
Fumiyuki Goto ◽  
Florian P. Kolb ◽  
Edwin Gilland

Activation maps of pre- and postsynaptic field potential components evoked by separate electrical stimulation of utricular, lagenar, and saccular nerve branches in the isolated frog hindbrain were recorded within a stereotactic outline of the vestibular nuclei. Utricular and lagenar nerve-evoked activation maps overlapped strongly in the lateral and descending vestibular nuclei, whereas lagenar amplitudes were greater in the superior vestibular nucleus. In contrast, the saccular nerve-evoked activation map coincided largely with the dorsal nucleus and the adjacent dorsal part of the lateral vestibular nucleus, corroborating a major auditory and lesser vestibular function of the frog saccule. The stereotactic position of individual second-order otolith neurons matched the distribution of the corresponding otolith nerve-evoked activation maps. Furthermore, particular types of second-order utricular and lagenar neurons were clustered with particular types of second-order canal neurons in a topology that anatomically mirrored the preferred convergence pattern of afferent otolith and canal signals in second-order vestibular neurons. Similarities in the spatial organization of functionally equivalent types of second-order otolith and canal neurons between frog and other vertebrates indicated conservation of a common topographical organization principle. However, the absence of a precise afferent sensory topography combined with the presence of spatially segregated groups of particular second-order vestibular neurons suggests that the vestibular circuitry is organized as a premotor map rather than an organotypical sensory map. Moreover, the conserved segmental location of individual vestibular neuronal phenotypes shows linkage of individual components of vestibulomotor pathways with the underlying genetically specified rhombomeric framework.


2003 ◽  
Vol 24 (2) ◽  
pp. 308-311 ◽  
Author(s):  
Giuseppe Magliulo ◽  
Mario Gagliardi ◽  
Giuseppe Ciniglio Appiani ◽  
Raffaello D'Amico

2002 ◽  
Vol 88 (5) ◽  
pp. 2287-2301 ◽  
Author(s):  
H. Straka ◽  
S. Holler ◽  
F. Goto

Second-order vestibular neurons (2°VN) were identified in the isolated frog brain by the presence of monosynaptic excitatory postsynaptic potentials (EPSPs) after separate electrical stimulation of individual vestibular nerve branches. Combinations of one macular and the three semicircular canal nerve branches or combinations of two macular nerve branches were stimulated separately in different sets of experiments. Monosynaptic EPSPs evoked from the utricle or from the lagena converged with monosynaptic EPSPs from one of the three semicircular canal organs in ∼30% of 2°VN. Utricular afferent signals converged predominantly with horizontal canal afferent signals (74%), and lagenar afferent signals converged with anterior vertical (63%) or posterior vertical (37%) but not with horizontal canal afferent signals. This convergence pattern correlates with the coactivation of particular combinations of canal and otolith organs during natural head movements. A convergence of afferent saccular and canal signals was restricted to very few 2°VN (3%). In contrast to the considerable number of 2°VN that received an afferent input from the utricle or the lagena as well as from one of the three canal nerves (∼30%), smaller numbers of 2°VN (14% of each type of 2°otolith or 2°canal neuron) received an afferent input from only one particular otolith organ or from only one particular semicircular canal organ. Even fewer 2°VN received an afferent input from more than one semicircular canal or from more than one otolith nerve (∼7% each). Among 2°VN with afferent inputs from more than one otolith nerve, an afferent saccular nerve input was particularly rare (4–5%). The restricted convergence of afferent saccular inputs with other afferent otolith or canal inputs as well as the termination pattern of saccular afferent fibers are compatible with a substrate vibration sensitivity of this otolith organ in frog. The ascending and/or descending projections of identified 2°VN were determined by the presence of antidromic spikes. 2°VN mediating afferent utricular and/or semicircular canal nerve signals had ascending and/or descending axons. 2°VN mediating afferent lagenar or saccular nerve signals had descending but no ascending axons. The latter result is consistent with the absence of short-latency macular signals on extraocular motoneurons during vertical linear acceleration. Comparison of data from frog and cat demonstrated the presence of a similar organization pattern of maculo- and canal-ocular reflexes in both species.


2000 ◽  
Vol 134 (1) ◽  
pp. 1-8 ◽  
Author(s):  
S. Ono ◽  
K. Kushiro ◽  
M. Zakir ◽  
H. Meng ◽  
H. Sato ◽  
...  
Keyword(s):  

1997 ◽  
Vol 116 (3) ◽  
pp. 381-388 ◽  
Author(s):  
H. Sato ◽  
Midori Imagawa ◽  
Naoki Isu ◽  
Yoshio Uchino

1997 ◽  
Vol 78 (4) ◽  
pp. 2186-2192 ◽  
Author(s):  
Y. Uchino ◽  
H. Sato ◽  
H. Suwa

Uchino, Y., H. Sato, and H. Suwa. Excitatory and inhibitory inputs from saccular afferents to single vestibular neurons in the cat. J. Neurophysiol. 78: 2186–2192, 1997. Connections from saccular afferents to vestibular neurons were studied by means of intracellular recordings of excitatory (E) and inhibitory (I) postsynaptic potentials (PSPs) in vestibular neurons after focal stimulation of the saccular macula in decerebrated cats. Focal stimulation was given to the saccular macula in two ways, in which the polarity of stimulus current via a pair of electrodes was changed. In group A, one of the electrodes was inserted into the ventral and the other into the dorsal edge of the saccular macula. The focal stimulation was across the striola so that the reversal of morphological polarization in hair cells was bridged by the pulse stimulus. In 22/36 vestibular neurons tested, the stimulation of the saccular macula evoked monosynaptic (≤1.2 ms) EPSPs, including EPSP-IPSP sequences, with one polarity of stimulation, and disynaptic (≥1.5 ms) IPSPs when the polarity of the stimulus current was changed. In 14/36 neurons, the response pattern was the same regardless of the stimulus polarity; EPSPs (12/36) or IPSPs (2/36). In group B, a pair of electrodes was inserted into the dorsal edge of the saccular macula, so that the striola was not bridged by the current stimulus. In all of the vestibular neurons tested, the response pattern was always the same regardless of the polarity: mono- (22/31) and disynaptic (3/31) EPSPs or disynaptic IPSPs (6/31). In addition, the saccular nerve was stimulated after removing the macula in some cats ( group C). The stimulation of the saccular nerve evoked EPSPs in 62 vestibular neurons (including EPSP-IPSP sequences in 31 neurons) and IPSPs in 19 vestibular neurons. Convergence between the saccular nerve and other vestibular nerves was studied by the intracellular recording of PSPs. Fifty-six percent (18/32) of the saccular-activated neurons had excitatory and/or inhibitory potentials evoked after stimulation of the utricular nerve and the horizontal and anterior semicircular canal nerves, and 44% (19/43) of the neurons received inputs from the posterior semicircular canal nerve. The results support the hypothesis that saccular afferents from one population of hair cells activate vestibular neurons monosynaptically and that afferents from another population of hair cells located on the opposite side of the striola appear to project to the same vestibular neurons disynaptically via inhibitory interneurons. Neural circuits from saccular afferents to vestibular neurons, which we term cross-striolar inhibition, thus may provide a mechanism for increasing the sensitivity to vertical linear acceleration. The circuit described is provided not only with high sensitivity but also with input noise-resistant characteristics.


1997 ◽  
Vol 77 (6) ◽  
pp. 3003-3012 ◽  
Author(s):  
Y. Uchino ◽  
H. Sato ◽  
M. Sasaki ◽  
M. Imagawa ◽  
H. Ikegami ◽  
...  

Uchino, Y., H. Sato, M. Sasaki, M. Imagawa, H. Ikegami, N. Isu, and W. Graf. Sacculocollic reflex arcs in cats. J. Neurophysiol. 77: 3003–3012, 1997. Neuronal connections and pathways underlying sacculocollic reflexes were studied by intracellular recordings from neck extensor and flexor motoneurons in decerebrate cat. Bipolar electrodes were placed within the left saccular nerve, whereas other branches of the vestibular nerve were removed in the inner ear. To prevent spread of stimulus current to other branches of the vestibular nerve, the saccular nerve and the electrodes were covered with warm semisolid paraffin-Vaseline mixture. Saccular nerve stimulation evoked disynaptic (1.8–3.0 ms) excitatory postsynaptic potentials (EPSPs) in ipsilateral neck extensor motoneurons and di- or trisynaptic (1.8–4.0 ms) EPSPs in contralateral neck extensor motoneurons, and di- and trisynaptic (1.7–3.6 ms) inhibitory postsynaptic potentials (IPSPs) in ipsilateral neck flexor motoneurons and trisynaptic (2.7–4.0 ms) IPSPs in contralateral neck flexor motoneurons. Ipsilateral inputs were about twice as strong as contralateral ones to both extensor and flexor motoneurons. To determine the pathways mediating this connectivity, the lateral part of the spinal cord containing the ipsilateral lateral vestibulospinal tract (i-LVST) or the central part of the spinal cord containing the medial vestibulospinal tracts (MVSTs) and possibly reticulospinal fibers (RSTs) were transected at the caudal end of the C1 segment. Subsequent renewed intracellular recordings following sacculus nerve stimulation indicated that the pathway from the saccular nerve to the ipsilateral neck extensor motoneurons projects though the i-LVST, whereas the pathways to the contralateral neck extensors and to the bilateral neck flexor motoneurons descend in the MVSTs/RSTs. Our data show that sacculo-neck reflex connections display a qualitatively bilaterally symmetrical innervation pattern with excitatory connections to both neck extensor motoneuron pools, and inhibitory connections to both neck flexor motoneuron pools. This bilateral organization contrasts with the unilateral innervation scheme of the utriculus system. These results suggest a different symmetry plane along which sacculus postural reflexes are organized, thus supplementing the reference planes of the utriculus system and allowing the gravistatic system to represent all three translational spatial degrees of freedom. We furthermore suggest that the sacculocollic reflex plays an important role in maintaining the relative position of the head and the body against the vertical linear acceleration of gravity.


1987 ◽  
Vol 417 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Marian J. Drescher ◽  
Dennis G. Drescher ◽  
James S. Hatfield
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document