scholarly journals Responses of Neurons in the Insular Cortex to Gustatory, Visceral, and Nociceptive Stimuli in Rats

1998 ◽  
Vol 79 (5) ◽  
pp. 2535-2545 ◽  
Author(s):  
Takamitsu Hanamori ◽  
Takato Kunitake ◽  
Kazuo Kato ◽  
Hiroshi Kannan

Hanamori, Takamitsu, Takato Kunitake, Kazuo Kato, and Hiroshi Kannan. Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J. Neurophysiol. 79: 2535–2545, 1998. Extracellular unit responses to baroreceptor and chemoreceptor stimulation, gustatory stimulation of the posterior tongue, electrical stimulation of the superior laryngeal (SL) nerve, and tail pinch were recorded from the insular cortex of anesthetized and paralyzed rats. Forty-three neurons identified responded to stimulation by at least one of the stimuli used in the present study. Of the 43 neurons, 33 responded to tail pinch, and the remaining 10 had no response; 18 showed an excitatory response, and 15 showed an inhibitory response. Of the 43 neurons, 35 responded to electrical stimulation of the SL nerve; 27 showed an excitatory response, and 8 showed an inhibitory response. Of the 20 neurons that responded to baroreceptor stimulation by an intravenous injection of methoxamine hydrochloride (Mex), 11 were excitatory and 9 were inhibitory. Twenty-seven neurons were responsive to an intravenous injection of sodium nitroprusside (SNP); 10 were excitatory and 17 were inhibitory. Ten neurons were excited and 16 neurons were inhibited by arterial chemoreceptor stimulation by an intravenous injection of sodium cyanide (NaCN). Twenty-six neurons were responsive to at least one of the gustatory stimuli (1.0 M NaCl, 30 mM HCl, 30 mM quinine HCl, and 1.0 M sucrose): four to six excitatory neurons and three to nine inhibitory neurons for each stimulus. A large number of the neurons (42/43) received convergent inputs from more than one stimulus among the nine stimuli used in the present study. Most neurons (38/43) were responsive to two or more stimulus groups when the natural stimuli used in the present study are grouped into three, gustatory, visceral, and nociceptive stimuli. The neurons recorded were located in the insular cortex between 2.8 mm anterior and 1.1 mm posterior to the anterior edge of the joining of the anterior commissure (AC); the mean location was 1.0 mm ( n = 43) anterior to the AC. This indicates that most of the neurons identified in the present study were located in the region posterior to the taste area and anterior to the visceral area in the insular cortex. These results indicate that the insular cortex neurons distributing between the taste area and the visceral area receive convergent inputs from baroreceptor, chemoreceptor, gustatory, and nociceptive organs and may have roles in taste aversion or in regulation of visceral responses.

1996 ◽  
Vol 76 (4) ◽  
pp. 2393-2401 ◽  
Author(s):  
N. Buonviso ◽  
M. A. Chaput ◽  
F. Berthommier

1. Neighboring mitral/tufted cells have been previously shown to present temporal correlations of their firings related to the respiratory rhythm, particularly under odor stimulation. This occurs despite the existence of a powerful inhibitory control exerted by granule cells onto mitral/tufted cells. In the present study, we hypothesized that neighboring mitral cells can present granular induced inhibitory periods with similar latencies and durations and that such a similarity would preserve them from a possible suppression of their temporal correlations. 2. To test this hypothesis, we analyzed the latencies and durations of the inhibitory periods induced by granular activation in pairs of simultaneously recorded neighboring mitral cells. The activation of granule cells was achieved by electrical stimulation of the different pathways known to directly activate granule cells [lateral olfactory tract (LOT), anterior limb of the anterior commissure (AC), and piriform cortex (PC)]. Data from this group were compared with those of a control group composed of distant cells also recorded simultaneously. 3. Results first show that the latencies to onset of inhibition or to recovery were more frequently similar in neighboring cells than in control cells and that this similarity was enhanced by odor stimulation. Second, the probability that two cells exhibit similar inhibitory periods (i.e., similar latencies to both onset and to recovery) in response to electrical stimulation of LOT, AC, or PC was significantly higher in neighboring than in control cells. Third, only neighboring cells were found to present similar inhibitory periods in response to the stimulation of all of the three structures. 4. Granular activation was also found to modify the temporal patterns of individual mitral cells. However, although these patterns were not systematically modified similarly in neighboring mitral cells, they remained perfectly synchronized with zero delay if they were already synchronous without electrical stimulation. On the contrary, if patterns were spontaneously uncorrelated, electrical stimulation never produced a synchronization of their firings, even if their temporal relationships could be profoundly modified. 5. These results show that neighboring mitral cells can receive granular-induced inhibition with similar latencies and durations with a probability much higher than control cells. Such similarities allow neighboring mitral cells to preserve their temporal correlation despite the powerful inhibitory input from granule cells. Functional hypotheses about the role of the cortical feedback projections onto the bulb are discussed.


1993 ◽  
Vol 74 (3) ◽  
pp. 1265-1273 ◽  
Author(s):  
L. Ling ◽  
D. R. Karius ◽  
D. F. Speck

Single-shock stimulation of the pontine respiratory group (PRG) produces a transient short-latency inhibition of inspiratory motor activity. Stimulus trains delivered to the PRG can elicit a premature termination of inspiration. This study examined the involvement of N-methyl-D-aspartate (NMDA), gamma-aminobutyrateA (GABAA), or glycine receptors in these inhibitory responses. Experiments were conducted in decerebrate, paralyzed, and ventilated cats. Control responses to PRG stimulation were obtained from recordings of the left phrenic nerve activity. After systemic injection of MK-801, bicuculline, or strychnine (antagonists to NMDA, GABAA, or glycine receptors, respectively), responses to stimulation were again recorded. Inspiratory termination elicited by the PRG stimulation persisted after antagonism of NMDA, GABAA, or glycine receptors. The onset latency and duration of the transient inhibition were not changed after administration of bicuculline, but MK-801 administration did significantly prolong the duration of the transient inhibition. Strychnine significantly prolonged both the onset latency and the duration. These data suggest that none of the three receptor types is required in the inspiratory termination response elicited by electrical stimulation of the PRG region and that NMDA, GABAA, or glycine receptor-mediated neurotransmission is not solely responsible for the transient inhibitory response. However, the prolonged onset and duration of the transient inhibition after strychnine administration suggest that glycine does normally participate in this response.


2009 ◽  
Vol 13 (S1) ◽  
Author(s):  
K. Simón‐Arceo ◽  
U. Coffeen ◽  
M. Palma ◽  
J.M. Ortega‐Legaspi ◽  
A. Lopez‐Avila ◽  
...  

2015 ◽  
Vol 113 (6) ◽  
pp. 1681-1696 ◽  
Author(s):  
Masaharu Yasuda ◽  
Okihide Hikosaka

Gaze is strongly attracted to visual objects that have been associated with rewards. Key to this function is a basal ganglia circuit originating from the caudate nucleus (CD), mediated by the substantia nigra pars reticulata (SNr), and aiming at the superior colliculus (SC). Notably, subregions of CD encode values of visual objects differently: stably by CD tail [CD(T)] vs. flexibly by CD head [CD(H)]. Are the stable and flexible value signals processed separately throughout the CD-SNr-SC circuit? To answer this question, we identified SNr neurons by their inputs from CD and outputs to SC and examined their sensitivity to object values. The direct input from CD was identified by SNr neuron's inhibitory response to electrical stimulation of CD. We found that SNr neurons were separated into two groups: 1) neurons inhibited by CD(T) stimulation, located in the caudal-dorsal-lateral SNr (cdlSNr), and 2) neurons inhibited by CD(H) stimulation, located in the rostral-ventral-medial SNr (rvmSNr). Most of CD(T)-recipient SNr neurons encoded stable values, whereas CD(H)-recipient SNr neurons tended to encode flexible values. The output to SC was identified by SNr neuron's antidromic response to SC stimulation. Among the antidromically activated neurons, many encoded only stable values, while some encoded only flexible values. These results suggest that CD(T)-cdlSNr-SC circuit and CD(H)-rvmSNr-SC circuit transmit stable and flexible value signals, largely separately, to SC. The speed of signal transmission was faster through CD(T)-cdlSNr-SC circuit than through CD(H)-rvmSNr-SC circuit, which may reflect automatic and controlled gaze orienting guided by these circuits.


Sign in / Sign up

Export Citation Format

Share Document