Pontine-evoked inspiratory inhibitions after antagonism of NMDA, GABAA, or glycine receptor

1993 ◽  
Vol 74 (3) ◽  
pp. 1265-1273 ◽  
Author(s):  
L. Ling ◽  
D. R. Karius ◽  
D. F. Speck

Single-shock stimulation of the pontine respiratory group (PRG) produces a transient short-latency inhibition of inspiratory motor activity. Stimulus trains delivered to the PRG can elicit a premature termination of inspiration. This study examined the involvement of N-methyl-D-aspartate (NMDA), gamma-aminobutyrateA (GABAA), or glycine receptors in these inhibitory responses. Experiments were conducted in decerebrate, paralyzed, and ventilated cats. Control responses to PRG stimulation were obtained from recordings of the left phrenic nerve activity. After systemic injection of MK-801, bicuculline, or strychnine (antagonists to NMDA, GABAA, or glycine receptors, respectively), responses to stimulation were again recorded. Inspiratory termination elicited by the PRG stimulation persisted after antagonism of NMDA, GABAA, or glycine receptors. The onset latency and duration of the transient inhibition were not changed after administration of bicuculline, but MK-801 administration did significantly prolong the duration of the transient inhibition. Strychnine significantly prolonged both the onset latency and the duration. These data suggest that none of the three receptor types is required in the inspiratory termination response elicited by electrical stimulation of the PRG region and that NMDA, GABAA, or glycine receptor-mediated neurotransmission is not solely responsible for the transient inhibitory response. However, the prolonged onset and duration of the transient inhibition after strychnine administration suggest that glycine does normally participate in this response.

1991 ◽  
Vol 261 (6) ◽  
pp. L443-L448 ◽  
Author(s):  
D. R. Karius ◽  
L. M. Ling ◽  
D. F. Speck

Previous studies have indicated that excitatory amino acids are involved in many afferent pathways. This study investigated the effects of intravenous MK-801 [an N-methyl-D-aspartate (NMDA) receptor-associated channel blocker] on several well-known respiratory reflexes elicited by afferent stimulation of the superior laryngeal (SLN), the intercostal (ICN), and the phrenic (PN) nerves. Control responses to stimulation were obtained from recordings of phrenic nerve activity in decerebrate, paralyzed cats. Inspiratory termination elicited by the delivery of stimulus trains to either the SLN or the ICN persisted after MK-801. The onset latency or duration of the short-latency excitations produced by SLN or ICN stimulation were unchanged. The transient inhibitions produced by SLN, ICN, PN, or medullary stimulation showed no significant changes in threshold, onset latency, or duration. Withholding lung inflation produced apneusis after administration of MK-801, indicating a central effect of the drug. Higher doses of MK-801 did not alter the parameters of these reflexes. These data indicate that NMDA-dependent neurotransmission is not required for the production of these reflexes.


1988 ◽  
Vol 118 (3) ◽  
pp. 471-483 ◽  
Author(s):  
L. M. Voloschin ◽  
E. Décima ◽  
J. H. Tramezzani

ABSTRACT Electrical stimulation of the XIII thoracic nerve (the 'mammary nerve') causes milk ejection and the release of prolactin and other hormones. We have analysed the route of the suckling stimulus at the level of different subgroups of fibres of the teat branch of the XIII thoracic nerve (TBTN), which innervates the nipple and surrounding skin, and assessed the micromorphology of the TBTN in relation to lactation. There were 844 ± 63 and 868 ± 141 (s.e.m.) nerve fibres in the TBTN (85% non-myelinated) in virgin and lactating rats respectively. Non-myelinated fibres were enlarged in lactating rats; the modal value being 0·3–0·4 μm2 for virgin and 0·4–0·5 μm2 for lactating rats (P > 0·001; Kolmogorov–Smirnov test). The modal value for myelinated fibres was 3–6 μm2 in both groups. The compound action potential of the TBTN in response to electrical stimulation showed two early volleys produced by the Aα- and Aδ-subgroups of myelinated fibres (conduction velocity rate of 60 and 14 m/s respectively), and a late third volley originated in non-myelinated fibres ('C') group; conduction velocity rate 1·4 m/s). Before milk ejection the suckling pups caused 'double bursts' of fibre activity in the Aδ fibres of the TBTN. Each 'double burst' consisted of low amplitude action potentials and comprised two multiple discharges (33–37 ms each) separated by a silent period of around 35 ms. The 'double bursts' occurred at a frequency of 3–4/s, were triggered by the stimulation of the nipple and were related to fast cheek movements visible only by watching the pups closely. In contrast, the Aα fibres of the TBTN showed brief bursts of high amplitude potentials before milk ejection. These were triggered by the stimulation of cutaneous receptors during gross slow sucking motions of the pup (jaw movements). Immediately before the triggering of milk ejection the mother was always asleep and a low nerve activity was recorded in the TBTN at this time. When reflex milk ejection occurred, the mother woke and a brisk increase in nerve activity was detected; this decreased when milk ejection was accomplished. In conscious rats the double-burst type of discharges in Aδ fibres was not observed, possibly because this activity cannot be detected by the recording methods currently employed in conscious animals. During milk ejection, action potentials of high amplitude were conveyed in the Aα fibres of the TBTN. During the treading time of the stretch reaction (SR), a brisk increase in activity occurred in larger fibres; during the stretching periods of the SR a burst-type discharge was again observed in slow-conducting afferents; when the pups changed nipple an abrupt increase in activity occurred in larger fibres. In summary, the non-myelinated fibres of the TBTN are increased in diameter during lactation, and the pattern of suckling-evoked nerve activity in myelinated fibres showed that (a) the double burst of Aδ fibres, produced by individual sucks before milk ejection, could be one of the conditions required for the triggering of the reflex, and (b) the nerve activity displayed during milk-ejection action may result, at least in part, from 'non-specific' stimulation of cutaneous receptors. J. Endocr. (1988) 118, 471–483


1991 ◽  
Vol 70 (6) ◽  
pp. 2539-2550 ◽  
Author(s):  
F. A. Hopp ◽  
J. L. Seagard ◽  
J. Bajic ◽  
E. J. Zuperku

Respiratory responses arising from both chemical stimulation of vascularly isolated aortic body (AB) and carotid body (CB) chemoreceptors and electrical stimulation of aortic nerve (AN) and carotid sinus nerve (CSN) afferents were compared in the anesthetized dog. Respiratory reflexes were measured as changes in inspiratory duration (TI), expiratory duration (TE), and peak averaged phrenic nerve activity (PPNG). Tonic AN and AB stimulations shortened TI and TE with no change in PPNG, while tonic CSN and CB stimulations shortened TE, increased PPNG, and transiently lengthened TI. Phasic AB and AN stimulations throughout inspiration shortened TI with no changes in PPNG or the following TE; however, similar phasic stimulations of the CB and CSN increased both TI and PPNG and decreased the following TE. Phasic AN stimulation during expiration decreased TE and the following TI with no change in PPNG. Similar stimulations of the CB and CSN decreased TE; however, the following TI and PPNG were increased. These findings differ from those found in the cat and suggest that aortic chemoreceptors affect mainly phase timing, while carotid chemoreceptors affect both timing and respiratory drive.


1998 ◽  
Vol 79 (5) ◽  
pp. 2535-2545 ◽  
Author(s):  
Takamitsu Hanamori ◽  
Takato Kunitake ◽  
Kazuo Kato ◽  
Hiroshi Kannan

Hanamori, Takamitsu, Takato Kunitake, Kazuo Kato, and Hiroshi Kannan. Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J. Neurophysiol. 79: 2535–2545, 1998. Extracellular unit responses to baroreceptor and chemoreceptor stimulation, gustatory stimulation of the posterior tongue, electrical stimulation of the superior laryngeal (SL) nerve, and tail pinch were recorded from the insular cortex of anesthetized and paralyzed rats. Forty-three neurons identified responded to stimulation by at least one of the stimuli used in the present study. Of the 43 neurons, 33 responded to tail pinch, and the remaining 10 had no response; 18 showed an excitatory response, and 15 showed an inhibitory response. Of the 43 neurons, 35 responded to electrical stimulation of the SL nerve; 27 showed an excitatory response, and 8 showed an inhibitory response. Of the 20 neurons that responded to baroreceptor stimulation by an intravenous injection of methoxamine hydrochloride (Mex), 11 were excitatory and 9 were inhibitory. Twenty-seven neurons were responsive to an intravenous injection of sodium nitroprusside (SNP); 10 were excitatory and 17 were inhibitory. Ten neurons were excited and 16 neurons were inhibited by arterial chemoreceptor stimulation by an intravenous injection of sodium cyanide (NaCN). Twenty-six neurons were responsive to at least one of the gustatory stimuli (1.0 M NaCl, 30 mM HCl, 30 mM quinine HCl, and 1.0 M sucrose): four to six excitatory neurons and three to nine inhibitory neurons for each stimulus. A large number of the neurons (42/43) received convergent inputs from more than one stimulus among the nine stimuli used in the present study. Most neurons (38/43) were responsive to two or more stimulus groups when the natural stimuli used in the present study are grouped into three, gustatory, visceral, and nociceptive stimuli. The neurons recorded were located in the insular cortex between 2.8 mm anterior and 1.1 mm posterior to the anterior edge of the joining of the anterior commissure (AC); the mean location was 1.0 mm ( n = 43) anterior to the AC. This indicates that most of the neurons identified in the present study were located in the region posterior to the taste area and anterior to the visceral area in the insular cortex. These results indicate that the insular cortex neurons distributing between the taste area and the visceral area receive convergent inputs from baroreceptor, chemoreceptor, gustatory, and nociceptive organs and may have roles in taste aversion or in regulation of visceral responses.


2015 ◽  
Vol 113 (6) ◽  
pp. 1681-1696 ◽  
Author(s):  
Masaharu Yasuda ◽  
Okihide Hikosaka

Gaze is strongly attracted to visual objects that have been associated with rewards. Key to this function is a basal ganglia circuit originating from the caudate nucleus (CD), mediated by the substantia nigra pars reticulata (SNr), and aiming at the superior colliculus (SC). Notably, subregions of CD encode values of visual objects differently: stably by CD tail [CD(T)] vs. flexibly by CD head [CD(H)]. Are the stable and flexible value signals processed separately throughout the CD-SNr-SC circuit? To answer this question, we identified SNr neurons by their inputs from CD and outputs to SC and examined their sensitivity to object values. The direct input from CD was identified by SNr neuron's inhibitory response to electrical stimulation of CD. We found that SNr neurons were separated into two groups: 1) neurons inhibited by CD(T) stimulation, located in the caudal-dorsal-lateral SNr (cdlSNr), and 2) neurons inhibited by CD(H) stimulation, located in the rostral-ventral-medial SNr (rvmSNr). Most of CD(T)-recipient SNr neurons encoded stable values, whereas CD(H)-recipient SNr neurons tended to encode flexible values. The output to SC was identified by SNr neuron's antidromic response to SC stimulation. Among the antidromically activated neurons, many encoded only stable values, while some encoded only flexible values. These results suggest that CD(T)-cdlSNr-SC circuit and CD(H)-rvmSNr-SC circuit transmit stable and flexible value signals, largely separately, to SC. The speed of signal transmission was faster through CD(T)-cdlSNr-SC circuit than through CD(H)-rvmSNr-SC circuit, which may reflect automatic and controlled gaze orienting guided by these circuits.


1988 ◽  
Vol 255 (6) ◽  
pp. H1349-H1358 ◽  
Author(s):  
J. S. Hade ◽  
S. W. Mifflin ◽  
T. S. Donta ◽  
R. B. Felder

We examined the role of the parabrachial neuronal mass in mediating the pressor response to electrical stimulation of parabrachial nucleus (PBN). In anesthetized cats, 100 mM L-glutamate (L-glu) was microinjected into PBN at sites from which low-intensity (25 microA) electrical stimulation evoked a pressor response. Arterial pressure, heart rate, and, in some animals, renal or phrenic nerve activity were monitored. Microinjection of L-glu caused an increase in arterial pressure that was comparable with that elicited by low-intensity electrical stimulation. Electrical stimulation, and to a lesser extent L-glu microinjection, caused an increase in renal sympathetic nerve activity but no significant change in heart rate. No consistent change in central respiratory drive accompanied the pressor response. These responses were preserved after baroreceptor denervation but were blocked by intravenous administration of the alpha-adrenergic receptor antagonist phentolamine. Microinjection into PBN of 2 mM kainic acid, which selectively depolarizes neurons but spares axons, reversibly blocked the arterial pressure and renal nerve responses to the 25-microA electrical stimulus. We conclude that the pressor response elicited by electrical stimulation of PBN in the anesthetized cat is mediated by cellular elements in PBN, not by fibers of passage. Because phentolamine completely blocked the pressor response, we suggest that it is subserved peripherally by sympathetic alpha-adrenergic rather than humoral (e.g., angiotensin, vasopressin) vasoconstrictor mechanisms. Finally, our data indirectly suggest that PBN stimulation may differentially engage efferent components of the sympathetic nervous system to elicit the pressor response.


1997 ◽  
Vol 272 (3) ◽  
pp. R913-R923 ◽  
Author(s):  
H. Morita ◽  
Y. Yamashita ◽  
Y. Nishida ◽  
M. Tokuda ◽  
O. Hatase ◽  
...  

Responses of hepatic afferent nerves to intraportal bolus injection of hypertonic solutions were examined in anesthetized rats. Hepatic afferent nerve activity increased in response to an intraportal injection of 0.75 M NaCl or NaHCO3 but did not respond to a similar injection of 1.5 M mannitol, 0.75 M LiCl, or 0.15 M NaCl, implying that nerves in the hepatoportal area are sensitive to increases in Na concentrations and that this leads to stimulation of hepatic afferent nerve activity. To study central activation in response to stimulation of the hepatic Na-sensitive mechanism, c-fos induction was monitored. After electrical stimulation of hepatic afferent nerves, neurons containing Fos-like immunoreactivity (Fos-li) were found in the area postrema, nucleus of the solitary tract, paraventricular hypothalamic nucleus, and supraoptic nucleus at 90 min after stimulation. Induction of Fos-li was also studied after simultaneous infusion of 0.45 M NaCl into the portal vein and distilled water into the inferior vena cava in conscious rats so as to keep the total amount of solution introduced into the systemic circulation isotonic, thus avoiding changes in mean arterial pressure, plasma osmolality, and plasma NaCl concentrations. Fos-li-containing neurons were found in the same regions in which they were found after electrical stimulation. However, few, if any, Fos-li-containing cells were found if the rats were hepatically denervated or if they received an intraportal infusion of hypertonic LiCl or mannitol. These data provide evidence for involvement of the brain stem and forebrain structures in NaCl regulatory functions induced by stimulation of the hepatoportal Na-sensitive mechanism. However, stimulation of the hepatoportal osmosensitive mechanism does not activate these central structures.


2006 ◽  
Vol 100 (3) ◽  
pp. 800-806 ◽  
Author(s):  
David D. Fuller ◽  
Francis J. Golder ◽  
E. B. Olson ◽  
Gordon S. Mitchell

We tested two hypotheses: 1) that the spontaneous enhancement of phrenic motor output below a C2 spinal hemisection (C2HS) is associated with plasticity in ventrolateral spinal inputs to phrenic motoneurons; and 2) that phrenic motor recovery in anesthetized rats after C2HS correlates with increased capacity to generate inspiratory volume during hypercapnia in unanesthetized rats. At 2 and 4 wk post-C2HS, ipsilateral phrenic nerve activity was recorded in anesthetized, paralyzed, vagotomized, and ventilated rats. Electrical stimulation of the ventrolateral funiculus contralateral to C2HS was used to activate crossed spinal synaptic pathway phrenic motoneurons. Inspiratory phrenic burst amplitudes ipsilateral to C2HS were larger in the 4- vs. 2-wk groups ( P < 0.05); however, no differences in spinally evoked compound phrenic action potentials could be detected. In unanesthetized rats, inspiratory volume and frequency were quantified using barometric plethysmography at inspired CO2 fractions between 0.0 and 0.07 (inspired O2 fraction 0.21, balance N2) before and 2, 3, and 5 wk post-C2HS. Inspiratory volume was diminished, and frequency enhanced, at 0.0 inspired CO2 fraction ( P < 0.05) 2-wk post-C2HS; further changes were not observed in the 3- and 5-wk groups. Inspiratory frequency during hypercapnia was unaffected by C2HS. Hypercapnic inspiratory volumes were similarly attenuated at all time points post-C2HS ( P < 0.05), thereby decreasing hypercapnic minute ventilation ( P < 0.05). Thus increases in ipsilateral phrenic activity during 4 wk post-C2HS have little impact on the capacity to generate inspiratory volume in unanesthetized rats. Enhanced crossed phrenic activity post-C2HS may reflect plasticity associated with spinal axons not activated by our ventrolateral spinal stimulation.


Sign in / Sign up

Export Citation Format

Share Document