high discharge
Recently Published Documents


TOTAL DOCUMENTS

341
(FIVE YEARS 110)

H-INDEX

39
(FIVE YEARS 8)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Mingqiang Wang ◽  
Ahmet E. Emre ◽  
Ji-Young Kim ◽  
Yiting Huang ◽  
Li Liu ◽  
...  

AbstractLithium–sulfur (Li–S) batteries have a high specific capacity, but lithium polysulfide (LPS) diffusion and lithium dendrite growth drastically reduce their cycle life. High discharge rates also necessitate their resilience to high temperature. Here we show that biomimetic self-assembled membranes from aramid nanofibers (ANFs) address these challenges. Replicating the fibrous structure of cartilage, multifactorial engineering of ion-selective mechanical, and thermal properties becomes possible. LPS adsorption on ANF surface creates a layer of negative charge on nanoscale pores blocking LPS transport. The batteries using cartilage-like bioinspired ANF membranes exhibited a close-to-theoretical-maximum capacity of 1268 mAh g−1, up to 3500+ cycle life, and up to 3C discharge rates. Essential for safety, the high thermal resilience of ANFs enables operation at temperatures up to 80 °C. The simplicity of synthesis and recyclability of ANFs open the door for engineering high-performance materials for numerous energy technologies.


2022 ◽  
Author(s):  
Xue Han ◽  
Min Wang ◽  
Jingxian Yu ◽  
Shengping Wang

The reversible layered structure of TiS2 with relaxation, such as a spring, was obtained by controlling the optimized potential range of 0.9-2.8 V (vs. Li+/Li) to yield high discharge capacity,...


2021 ◽  
Author(s):  
Alexandre Tuel ◽  
Bettina Schaefli ◽  
Jakob Zscheischler ◽  
Olivia Martius

Abstract. River discharge is impacted by the sub-seasonal (weekly to monthly) temporal structure of precipitation. One example is the successive occurrence of extreme precipitation events over sub-seasonal timescales, referred to as temporal clustering. Its potential effects on discharge have received little attention. Here, we address this question by analysing discharge observations following extreme precipitation events either clustered in time or occurring in isolation. We rely on two sets of precipitation and discharge data, one centered on Switzerland and the other over Europe. We identify "clustered" extreme precipitation events based on the previous occurrence of another extreme precipitation within a given time window. We find that clustered events are generally followed by a more prolonged discharge response with a larger amplitude. The probability of exceeding the 95th discharge percentile in the five days following an extreme precipitation event is in particular up to twice as high for situations where another extreme precipitation event occurred in the preceding week compared to isolated extreme precipitation events. The influence of temporal clustering decreases as the clustering window increases; beyond 6–8 weeks the difference with non-clustered events is negligible. Catchment area, streamflow regime and precipitation magnitude also modulate the response. The impact of clustering is generally smaller in snow-dominated and large catchments. Additionally, particularly persistent periods of high discharge tend to occur in conjunction with temporal clusters of precipitation extremes.


2021 ◽  
Author(s):  
Lars Rüpke ◽  
Zhikui Guo ◽  
Sven Petersen ◽  
Christopher German ◽  
Benoit Ildefonse ◽  
...  

Abstract Submarine massive sulfide deposits on slow-spreading ridges are larger and longer-lived than deposits at fast-spreading ridges1,2, likely due to more pronounced tectonic faulting creating stable preferential fluid pathways3,4. The TAG hydrothermal mound at 26°N on the Mid-Atlantic Ridge (MAR) is a typical example located on the hanging wall of a detachment fault5-7. It has formed through distinct phases of high-temperature fluid discharge lasting 10s to 100s of years throughout at least the last 50,000 years8 and is one of the largest sulfide accumulations on the MAR. Yet, the mechanisms that control the episodic behavior, keep the fluid pathways intact, and sustain the observed high heat fluxes of up to 1800 MW9 remain poorly understood. Previous concepts involved long-distance channelized high-temperature fluid upflow along the detachment5,10 but that circulation mode is thermodynamically unfavorable11 and incompatible with TAG's high discharge fluxes. Here, based on the joint interpretation of hydrothermal flow observations and 3-D flow modeling, we show that the TAG system can be explained by episodic magmatic intrusions into the footwall of a highly permeable detachment surface. These intrusions drive episodes of hydrothermal activity with sub-vertical discharge and recharge along the detachment. This revised flow regime reconciles problematic aspects of previously inferred circulation patterns and can be used as guidance to one critical combination of parameters that can generate substantive mineral systems.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1527
Author(s):  
Wilmar L. Cerón ◽  
Mary T. Kayano ◽  
Camilo Ocampo-Marulanda ◽  
Teresita Canchala ◽  
Irma Ayes Rivera ◽  
...  

The Cauca River rises in the Colombian Andes and is the main tributary of the Magdalena River, which drains to the Caribbean Sea. The La Balsa station monitors the Upper Cauca basin and is located just downstream of La Salvajina hydroelectric facility. At this station, the discharge time series for November–January during 1950–2019 shows a statistically significant downward break, and change of distribution after 1986 has been documented after La Salvajina started operation. We assessed the spatio-temporal variability of hydroclimatology in the upper Cauca River basin during the pre- and post-Salvajina dam periods to better understand this break. Post-Salvajina, low (high) discharge events are linked to negative (positive) precipitation and soil moisture anomalies that are greater in magnitude and extension than those recorded in the pre-Salvajina period in response to the more intense El Niño events (more intense and frequent central La Niña events) after 1986. Therefore, it is necessary to consider possible future rainfall scenarios and non-infrastructure measures (i.e., reforestation, territorial planning, integrated watershed management, etc.) to mitigate floods and droughts impacts. The contribution of this study is to provide evidence for the need for foresight in the design of any structural or non-structural flood measures.


2021 ◽  
Author(s):  
Kai Zhang ◽  
You Li ◽  
Hongyu Wang ◽  
Zisheng Zhang ◽  
Guihua Liu ◽  
...  

Abstract The development of efficient sulfur host materials to address the shuttle effect issues of lithium polysulfides (LiPSs) is crucial in the lithium-sulfur (Li-S) batteries, but still challenging. In the present study, a novel yolk shell structured MgCo-LDH/ZIF-67 composite is designed as Li-S battery cathode. In this composite, the shell layer is MgCo layered double hydroxide constructed by partially etching ZIF-67 nanoparticle by Mg2+, and the core is the unreacted ZIF-67 particle. The unique yolk shell structure not only provides abundant pores for sulfur accommodation, but also facilitates the electrolyte penetration and ion transport. The ZIF-67 core exhibits strong polar adsorption to LiPSs through the Lewis acid-base interactions, and the micropores/mesoporous can further trap LiPSs. Meanwhile, the MgCo-LDH shell exposes enough sulfur-philic sites for enhancing chemisorption and catalyzes the LiPSs conversion. As a result, when MgCo-LDH/ZIF-67 is used as sulfur host in the cathode, the cell achieves a high discharge capacity of 1121 mAh g-1 at 0.2 C, and an areal capacity of 5.0 mAh cm-2 under the high sulfur loading of 5.8 mg cm-2. The S/MgCo-LDH/ZIF-67 electrode holds a promising potential for the development of Li-S batteries.


2021 ◽  
Vol 14 (3-4) ◽  
pp. 39-46
Author(s):  
Tamás Bartyik ◽  
György Sipos ◽  
Dávid Filyó ◽  
Tímea Kiss ◽  
Petru Urdea ◽  
...  

Abstract River Maros/Mureş has one of the largest alluvial fans in the Carpathian Basin. On the surface of the fan several very wide, braided channels can be identified, resembling increased discharges during the Late Glacial. In our study we investigated the activity period of the largest channel of them, formed under a bankfull discharge three times higher than present day values. Previous investigations dated the formation of the palaeochannel to the very end of the Pleistocene by dating a point bar series upstream of the selected site. Our aim was to obtain further data on the activity period of the channel and to investigate temporal relationships between maximum palaeodischarges, deglaciation phases on the upland catchment and climatic amelioration during the Late Pleistocene. The age of sediment samples was determined by optically stimulated luminescence (OSL). The investigation of the luminescence properties of the quartz extracts also enabled the assessment of sediment delivery dynamics in comparison to other palaeochannels on the alluvial fan. OSL age results suggest that the activity of the channel is roughly coincident with, but slightly older than the previously determined ages, meaning that the main channel forming period started at 13.50±0.94 ka and must have ended by 8.64±0.82 ka. This period cannot directly be related to the major phases of glacier retreat on the upland catchments, and in terms of other high discharge channels only the activity of one overlaps with a major deglaciation phase at ~17-18 ka. Based on these, high palaeodischarges can be rather related to increased Late Glacial runoff, resulted by increasing precipitation and scarce vegetation cover on the catchment. Meanwhile, the quartz luminescence sensitivity of the investigated channel refers to fast sediment delivery from upland subcatchments. Therefore, the retreat of glaciers could affect alluvial processes on the lowland by increasing sediment availability, which contributed to the development of large braided palaeochannels.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tianjiang Sun ◽  
Shibing Zheng ◽  
Haihui Du ◽  
Zhanliang Tao

AbstractAlthough aqueous zinc-ion batteries have gained great development due to their many merits, the frozen aqueous electrolyte hinders their practical application at low temperature conditions. Here, the synergistic effect of cation and anion to break the hydrogen-bonds network of original water molecules is demonstrated by multi-perspective characterization. Then, an aqueous-salt hydrates deep eutectic solvent of 3.5 M Mg(ClO4)2 + 1 M Zn(ClO4)2 is proposed and displays an ultralow freezing point of − 121 °C. A high ionic conductivity of 1.41 mS cm−1 and low viscosity of 22.9 mPa s at − 70 °C imply a fast ions transport behavior of this electrolyte. With the benefits of the low-temperature electrolyte, the fabricated Zn||Pyrene-4,5,9,10-tetraone (PTO) and Zn||Phenazine (PNZ) batteries exhibit satisfactory low-temperature performance. For example, Zn||PTO battery shows a high discharge capacity of 101.5 mAh g−1 at 0.5 C (200 mA g−1) and 71 mAh g−1 at 3 C (1.2 A g−1) when the temperature drops to − 70 °C. This work provides an unique view to design anti-freezing aqueous electrolyte."Image missing"


2021 ◽  
pp. 2106984
Author(s):  
Hao Wan ◽  
Yingjie Sun ◽  
Wenlong Cai ◽  
Qianqi Shi ◽  
Yongchun Zhu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 21 (10) ◽  
pp. 2949-2972
Author(s):  
Alexandre Tuel ◽  
Olivia Martius

Abstract. The successive occurrence of extreme precipitation events on sub-seasonal timescales can lead to large precipitation accumulations and extreme river discharge. In this study, we analyze the sub-seasonal clustering of precipitation extremes in Switzerland and its link to the occurrence and duration of extreme river discharge. We take a statistical approach based on Ripley's K function to characterize the significance of the clustering for each season separately. Temporal clustering of precipitation extremes exhibits a distinct spatiotemporal pattern. It occurs primarily on the northern side of the Alps in winter and on their southern side in fall. Cluster periods notably account for 10 %–16 % of seasonal precipitation in these two regions. The occurrence of a cluster of precipitation extremes generally increases the likelihood and duration of high-discharge events compared to non-clustered precipitation extremes, particularly at low elevations. It is less true in winter, when the magnitude of precipitation extremes is generally lower and much of the precipitation falls as snow. In fall, however, temporal clusters associated with large precipitation accumulations over the southern Alps are found to be almost systematically followed by extreme discharge.


Sign in / Sign up

Export Citation Format

Share Document