Central and peripheral contributions to coding of acoustic space by neurons in inferior colliculus of cat

1986 ◽  
Vol 55 (3) ◽  
pp. 587-603 ◽  
Author(s):  
M. B. Calford ◽  
D. R. Moore ◽  
M. E. Hutchings

Recordings of response to free-field stimuli at best frequency were made from single units in the central nucleus of the inferior colliculus of anesthetized cats. Stimulus position was varied in azimuth, and the responses of units were compared with variation in the intensity and arrival time of the sound at each ear, derived from cochlear microphonic (CM) recordings. CM recordings were made at each frequency and at every point in space for which single-unit data were collected. Interaural time difference (delay) increased monotonically, but not linearly, as the stimulus was moved away from the midline. However, a given delay did not represent a single azimuth across frequency. Low-frequency interaural intensity differences (IIDs) were monotonic across azimuth and peaked at, or near, the poles. Higher-frequency IIDs were nonmonotonic and peaked relatively close to the midline, decreasing toward the poles. Units that showed little variation in discharge across azimuth formed 28% of the sample and were classified as omnidirectional. For other units, the spike-count intensity function and the variation of the CM with azimuth were combined to form a derived monaural azimuth function. For 29% of those units showing azimuthal sensitivity, the derived monaural azimuth function matched the actual azimuth function. This suggested that these units received input from only one ear. The largest group of azimuthally sensitive units (47%) was formed from those units inferred to be IID sensitive. At higher frequencies these units displayed a peaked azimuth function paralleling the nonmonotonic relation of IID to azimuth. The proportion of inferred IID-sensitive units was close to that found in dichotic studies.

2011 ◽  
Vol 106 (5) ◽  
pp. 2523-2535 ◽  
Author(s):  
Anthony J. Williams ◽  
Zoltan M. Fuzessery

Multiple mechanisms have been shown to shape frequency-modulated (FM) selectivity within the central nucleus of the inferior colliculus (IC) in the pallid bat. In this study we focus on the mechanisms associated with sideband inhibition. The relative arrival time of inhibition compared with excitation can be used to predict FM responses as measured with a two-tone inhibition paradigm. An early-arriving low-frequency inhibition (LFI) prevents responses to upward sweeps and thus shapes direction selectivity. A late-arriving high-frequency inhibition (HFI) suppresses slow FM sweeps and thus shapes rate selectivity for downward sweeps. Iontophoretic application of gabazine (GBZ) to block GABAA receptors or strychnine (Strych) to block glycine receptors was used to assess the effects of removal of inhibition on each form of FM selectivity. GBZ and Strych had a similar effect on FM direction selectivity, reducing selectivity in up to 86% of neurons when both drugs were coapplied. FM rate selectivity was more resistant to drug application with less than 38% of neurons affected. In addition, only Strych could eliminate FM rate selectivity, whereas GBZ alone was ineffective. The loss of FM selectivity was directly correlated to a loss of the respective inhibitory sideband that shapes that form of selectivity. The elimination of LFI correlated to a loss of FM direction selectivity, whereas elimination of HFI correlated to a loss of FM rate selectivity. Results indicate that 1) although the majority of FM direction selectivity is created within the IC, the majority of rate selectivity is inherited from lower levels of the auditory system, 2) a loss of LFI corresponds to a loss of FM direction selectivity and is created through either GABAergic or glycinergic input, and 3) a loss of HFI corresponds to a loss of FM rate selectivity and is created mainly through glycinergic input.


1999 ◽  
Vol 82 (1) ◽  
pp. 164-175 ◽  
Author(s):  
Kevin A. Davis ◽  
Ramnarayan Ramachandran ◽  
Bradford J. May

Single units in the central nucleus of the inferior colliculus (ICC) of unanesthetized decerebrate cats can be grouped into three distinct types (V, I, and O) according to the patterns of excitation and inhibition revealed in contralateral frequency response maps. This study extends the description of these response types by assessing their ipsilateral and binaural response map properties. Here the nature of ipsilateral inputs is evaluated directly using frequency response maps and compared with results obtained from methods that rely on sensitivity to interaural level differences (ILDs). In general, there is a one-to-one correspondence between observed ipsilateral input characteristics and those inferred from ILD manipulations. Type V units receive ipsilateral excitation and show binaural facilitation (EE properties); type I and type O units receive ipsilateral inhibition and show binaural excitatory/inhibitory (EI) interactions. Analyses of binaural frequency response maps show that these ILD effects extend over the entire receptive field of ICC units. Thus the range of frequencies that elicits excitation from type V units is expanded with increasing levels of ipsilateral stimulation, whereas the excitatory bandwidth of type I and O units decreases under the same binaural conditions. For the majority of ICC units, application of bicuculline, an antagonist for GABAA-mediated inhibition, does not alter the basic effects of binaural stimulation; rather, it primarily increases spontaneous and maximum discharge rates. These results support our previous interpretations of the putative dominant inputs to ICC response types and have important implications for midbrain processing of competing free-field sounds that reach the listener with different directional signatures.


1987 ◽  
Vol 58 (3) ◽  
pp. 543-561 ◽  
Author(s):  
J. C. Chan ◽  
T. C. Yin ◽  
A. D. Musicant

1. We studied cells in the central nucleus of the inferior colliculus of the cat that were sensitive to interaural time delays (ITDs) in order to evaluate the influence of the stimulus spectrum of noise signals. Stimuli were sharply filtered low-, high-, and band-pass noise signals whose cutoff frequencies and bandwidths were systematically varied. The responses to ITDs of these noise signals were compared with responses obtained to ITDs of broadband noise and pure tones. 2. The discharge rate in response to band-pass noise as a function of ITD was usually a cyclic function with decreasing peak amplitudes at longer ITDs. The reciprocal of the mean interval between adjacent peaks indicated how rapidly the response rate varied with ITD and was termed the response frequency (RF). This RF was approximately equal to the median frequency of the stimulus spectrum filtered by the cell's sync-rate curve, which was the product of the synchronization to interaural phase and the discharge rate plotted against frequency. This suggests that the RF was determined by all the spectral components in the stimulus that fell within the frequency range in which the cell's response was synchronized. The contribution of each component was proportional to the sync-rate for that frequency. 3. The central peak of the ITD function usually fell within the physiological range of ITDs (+/- 400 microseconds). The location of this peak did not vary significantly with changes in stimulus spectrum by comparison with responses to tones of different frequency. Its shape also remained constant, except for a decrease in width when high-frequency components within the range of the sync-rate curve were added to the stimulus. A few cells responded with a minimal discharge instead of a maximal near-zero ITD, and this central minimum had similar properties as the central peak. The amplitude of the secondary peaks of the ITD function decreased as the stimulus bandwidth that overlapped the sync-rate curve broadened. 4. The sum of the ITD functions to two band-pass signals was similar to that of a broadband signal whose spectrum was composed of the sum of the band-pass spectra. 5. From these binaural responses we could make inferences about the response characteristics of the monaural inputs to binaural neurons. We then verified these predictions by studying responses of low-frequency trapezoid body fibers to band-pass noises.


2020 ◽  
Vol 123 (2) ◽  
pp. 695-706
Author(s):  
Lu Luo ◽  
Na Xu ◽  
Qian Wang ◽  
Liang Li

The central mechanisms underlying binaural unmasking for spectrally overlapping concurrent sounds, which are unresolved in the peripheral auditory system, remain largely unknown. In this study, frequency-following responses (FFRs) to two binaurally presented independent narrowband noises (NBNs) with overlapping spectra were recorded simultaneously in the inferior colliculus (IC) and auditory cortex (AC) in anesthetized rats. The results showed that for both IC FFRs and AC FFRs, introducing an interaural time difference (ITD) disparity between the two concurrent NBNs enhanced the representation fidelity, reflected by the increased coherence between the responses evoked by double-NBN stimulation and the responses evoked by single NBNs. The ITD disparity effect varied across frequency bands, being more marked for higher frequency bands in the IC and lower frequency bands in the AC. Moreover, the coherence between IC responses and AC responses was also enhanced by the ITD disparity, and the enhancement was most prominent for low-frequency bands and the IC and the AC on the same side. These results suggest a critical role of the ITD cue in the neural segregation of spectrotemporally overlapping sounds. NEW & NOTEWORTHY When two spectrally overlapped narrowband noises are presented at the same time with the same sound-pressure level, they mask each other. Introducing a disparity in interaural time difference between these two narrowband noises improves the accuracy of the neural representation of individual sounds in both the inferior colliculus and the auditory cortex. The lower frequency signal transformation from the inferior colliculus to the auditory cortex on the same side is also enhanced, showing the effect of binaural unmasking.


1995 ◽  
Vol 74 (4) ◽  
pp. 1689-1700 ◽  
Author(s):  
Y. Albeck ◽  
M. Konishi

1. Extracellular single-unit recording in anesthetized barn owls was used to study neuronal response to dichotic stimuli of variable binaural correlation (BC). Recordings were made in the output fibers of nucleus laminaris (NL), the anterior division of the ventral lateral lemniscal nucleus (VLVa), the core of the central nucleus of the inferior colliculus (ICcC), the lateral shell of the central nucleus of the inferior colliculus (ICcLS), and the external nucleus of the inferior colliculus (ICx). 2. The response of all neurons sensitive to interaural time difference (ITD) varied with BC. The relationship between BC and impulse number fits a linear, a parabolic, or a ramp model. A linear or parabolic model fits most neurons in low-level nuclei. Higher order neurons in ICx did not respond to noise bursts with strong negative binaural correlation, creating a ramp-like response to BC. 3. A neuron's ability to detect ITD varied as a function of BC. Conversely, a neuron's response to BC changed with ITD. Neurons in NL, VLVa, and ICcC show almost periodic ITD response curves. In these neurons peaks and troughs of ITD response curves diminished as BC decreased, creating a flat ITD response when BC = 0. When BC was set to -1, the most favorable ITD became the least favorable one and vice versa. The ITD response curve of ICx neurons usually has a single dominant peak. The response of those neurons to a negatively correlated noise pair (BC = -1) showed two ITD peaks, flanking the position of the primary peak. 4. The parabolic BC response of NL neurons fits the prediction of the cross-correlation model, assuming half-wave rectification of the sound by the cochlea. Linear response is not predicted by the model. However, the parabolic and the linear neurons probably do not belong to two distinct groups as the difference between them is not statistically significant. Thus, the cross-correlation model provides a good description of the binaural response not only in NL but also in VLVa and ICcC. 5. Almost all ramp neurons occurred in either ICx or ICcLS where neurons are more broadly tuned to frequency than those in the lower nuclei. The synthesis of this response type requires, however, not only the convergence of different frequency channels but also inhibition between different ITD channels. We modeled the ramp response as a three-step process. First, different spectral channels converge to create broad frequency tuning. The response to variation in BC will be linear (or parabolic) because it is a sum of linear (parabolic) responses. Second, the activity in some adjacent ITD channels is subtracted by lateral inhibition. Finally, the result is rectified using a high threshold to avoid negative activity.


2003 ◽  
Vol 90 (5) ◽  
pp. 2827-2836 ◽  
Author(s):  
W. R. D'Angelo ◽  
S. J. Sterbing ◽  
E.-M. Ostapoff ◽  
S. Kuwada

In our companion paper, we reported on interaural time difference (ITD)-sensitive neurons that enhanced, suppressed, or did not change their response when identical AM was added to both ears. Here, we first examined physical factors such as the difference in the interaural correlation, spectrum, or energy between the modulated and unmodulated signals. These were insufficient to explain the observed enhancement and suppression. We then examined neural mechanisms by selectively modulating the signal to each ear, varying modulation depth, and adding background noise to the unmodulated signal. These experiments implicated excitatory and inhibitory monaural inputs to the inferior colliculus (IC). These monaural inputs are postulated to adapt to an unmodulated signal and adapt less to a modulated signal. Thus enhancement or suppression is created by the convergence of these excitatory or inhibitory inputs with the inputs from the binaural comparators. Under modulation, the role of the monaural input is to shift the threshold of the IC neuron. Consistent with this role, background noise mimicked the effect of modulation. Functionally, enhancement and suppression may serve in detecting the degree of modulation in a sound source while preserving ITD information.


2005 ◽  
Vol 93 (6) ◽  
pp. 3390-3400 ◽  
Author(s):  
W. R. D’Angelo ◽  
S. J. Sterbing ◽  
E.-M. Ostapoff ◽  
S. Kuwada

A major cue for the localization of sound in space is the interaural time difference (ITD). We examined the role of inhibition in the shaping of ITD responses in the inferior colliculus (IC) by iontophoretically ejecting γ-aminobutyric acid (GABA) antagonists and GABA itself using a multibarrel pipette. The GABA antagonists block inhibition, whereas the applied GABA provides a constant level of inhibition. The effects on ITD responses were evaluated before, during and after the application of the drugs. If GABA-mediated inhibition is involved in shaping ITD tuning in IC neurons, then applying additional amounts of this inhibitory transmitter should alter ITD tuning. Indeed, for almost all neurons tested, applying GABA reduced the firing rate and consequently sharpened ITD tuning. Conversely, blocking GABA-mediated inhibition increased the activity of IC neurons, often reduced the signal-to-noise ratio and often broadened ITD tuning. Blocking GABA could also alter the shape of the ITD function and shift its peak suggesting that the role of inhibition is multifaceted. These effects indicate that GABAergic inhibition at the level of the IC is important for ITD coding.


2003 ◽  
Vol 89 (5) ◽  
pp. 2760-2777 ◽  
Author(s):  
Pierre Poirier ◽  
Frank K. Samson ◽  
Thomas J. Imig

We recorded high-best-frequency single-unit responses to free-field noise bursts that varied in intensity and azimuth to determine whether inferior colliculus (IC) neurons derive directionality from monaural spectral-shape. Sixty-nine percent of the sample was directional (much more responsive at some azimuths than others). One hundred twenty-nine directional units were recorded under monaural conditions (unilateral ear plugging). Binaural directional (BD) cells showed weak monaural directionality. Monaural directional (MD) cells showed strong monaural directionality, i.e., were much more responsive at some directions than others. Some MD cells were sensitive to both monaural and binaural directional cues. MD cells were monaurally nondirectional in response to tone bursts that lack direction-dependent variation in spectral shape. MD cells were unresponsive to noise bursts at certain azimuths even at high intensities showing that particular spectral shapes inhibit their responses. Two-tone inhibition was stronger where MD cells were unresponsive to noise stimulation than at directions where they were responsive. According to the side-band inhibition model, MD cells derive monaural directionality by comparing energy in excitatory and inhibitory frequency domains and thus should have stronger inhibitory side-bands than BD cells. MD and BD cells showed differences in breadth of excitatory frequency domains, strength of nonmonotonic level tuning, and responsiveness to tones and noise that were consistent with this prediction. Comparison of these data with previous findings shows that strength of spectral inhibition increases greatly between the level of the cochlear nucleus and the IC, and there is relatively little change in strength of spectral inhibition among the IC, auditory thalamus, and cortex.


2009 ◽  
Vol 101 (5) ◽  
pp. 2348-2361 ◽  
Author(s):  
Katrin Vonderschen ◽  
Hermann Wagner

Barn owls process sound-localization information in two parallel pathways, the midbrain and the forebrain pathway. Exctracellular recordings of neural responses to auditory stimuli from far advanced stations of these pathways, the auditory arcopallium in the forebrain and the external nucleus of the inferior colliculus in the midbrain, demonstrated that the representations of interaural time difference and frequency in the forebrain pathway differ from those in the midbrain pathway. Specifically, low-frequency representation was conserved in the forebrain pathway, while it was lost in the midbrain pathway. Variation of interaural time difference yielded symmetrical tuning curves in the midbrain pathway. By contrast, the typical forebrain-tuning curve was asymmetric with a steep slope crossing zero time difference and a less-steep slope toward larger contralateral time disparities. Low sound frequencies contributed sensitivity to contralateral leading sounds underlying these asymmetries, whereas high frequencies enhanced the steepness of slopes at small interaural time differences. Furthermore, the peaks of time-disparity tuning curves were wider in the forebrain than in the midbrain. The distribution of the steepest slopes of best interaural time differences in the auditory arcopallium, but not in the external nucleus of the inferior colliculus, was centered at zero time difference. The distribution observed in the auditory arocpallium is reminiscent of the situation observed in small mammals. We speculate that the forebrain representation may serve as a population code supporting fine discrimination of central interaural time differences and coarse indication of laterality of a stimulus for large interaural time differences.


Sign in / Sign up

Export Citation Format

Share Document