Interdependence of Spatial and Temporal Coding in the Auditory Midbrain

2000 ◽  
Vol 83 (4) ◽  
pp. 2300-2314 ◽  
Author(s):  
U. Koch ◽  
B. Grothe

To date, most physiological studies that investigated binaural auditory processing have addressed the topic rather exclusively in the context of sound localization. However, there is strong psychophysical evidence that binaural processing serves more than only sound localization. This raises the question of how binaural processing of spatial cues interacts with cues important for feature detection. The temporal structure of a sound is one such feature important for sound recognition. As a first approach, we investigated the influence of binaural cues on temporal processing in the mammalian auditory system. Here, we present evidence that binaural cues, namely interaural intensity differences (IIDs), have profound effects on filter properties for stimulus periodicity of auditory midbrain neurons in the echolocating big brown bat, Eptesicus fuscus. Our data indicate that these effects are partially due to changes in strength and timing of binaural inhibitory inputs. We measured filter characteristics for the periodicity (modulation frequency) of sinusoidally frequency modulated sounds (SFM) under different binaural conditions. As criteria, we used 50% filter cutoff frequencies of modulation transfer functions based on discharge rate as well as synchronicity of discharge to the sound envelope. The binaural conditions were contralateral stimulation only, equal stimulation at both ears (IID = 0 dB), and more intense at the ipsilateral ear (IID = −20, −30 dB). In 32% of neurons, the range of modulation frequencies the neurons responded to changed considerably comparing monaural and binaural (IID =0) stimulation. Moreover, in ∼50% of neurons the range of modulation frequencies was narrower when the ipsilateral ear was favored (IID = −20) compared with equal stimulation at both ears (IID = 0). In ∼10% of the neurons synchronization differed when comparing different binaural cues. Blockade of the GABAergic or glycinergic inputs to the cells recorded from revealed that inhibitory inputs were at least partially responsible for the observed changes in SFM filtering. In 25% of the neurons, drug application abolished those changes. Experiments using electronically introduced interaural time differences showed that the strength of ipsilaterally evoked inhibition increased with increasing modulation frequencies in one third of the cells tested. Thus glycinergic and GABAergic inhibition is at least one source responsible for the observed interdependence of temporal structure of a sound and spatial cues.

Neuron ◽  
2009 ◽  
Vol 62 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Sasha Devore ◽  
Antje Ihlefeld ◽  
Kenneth Hancock ◽  
Barbara Shinn-Cunningham ◽  
Bertrand Delgutte

2019 ◽  
Author(s):  
Daniel P. Kumpik ◽  
Connor Campbell ◽  
Jan W.H. Schnupp ◽  
Andrew J King

AbstractSound localization requires the integration in the brain of auditory spatial cues generated by interactions with the external ears, head and body. Perceptual learning studies have shown that the relative weighting of these cues can change in a context-dependent fashion if their relative reliability is altered. One factor that may influence this process is vision, which tends to dominate localization judgments when both modalities are present and induces a recalibration of auditory space if they become misaligned. It is not known, however, whether vision can alter the weighting of individual auditory localization cues. Using non-individualized head-related transfer functions, we measured changes in subjects’ sound localization biases and binaural localization cue weights after ~55 minutes of training on an audiovisual spatial oddball task. Four different configurations of spatial congruence between visual and auditory cues (interaural time differences (ITDs) and frequency-dependent interaural level differences (interaural level spectra, ILS) were used. When visual cues were spatially congruent with both auditory spatial cues, we observed an improvement in sound localization, as shown by a reduction in the variance of subjects’ localization biases, which was accompanied by an up-weighting of the more salient ILS cue. However, if the position of either one of the auditory cues was randomized during training, no overall improvement in sound localization occurred. Nevertheless, the spatial gain of whichever cue was matched with vision increased, with different effects observed on the gain for the randomized cue depending on whether ITDs or ILS were matched with vision. As a result, we observed a similar up-weighting in ILS when this cue alone was matched with vision, but no overall change in binaural cue weighting when ITDs corresponded to the visual cues and ILS were randomized. Consistently misaligning both cues with vision produced the ventriloquism aftereffect, i.e., a corresponding shift in auditory localization bias, without affecting the variability of the subjects’ sound localization judgments, and no overall change in binaural cue weighting. These data show that visual contextual information can invoke a reweighting of auditory localization cues, although concomitant improvements in sound localization are only likely to accompany training with fully congruent audiovisual information.


2004 ◽  
Vol 92 (2) ◽  
pp. 939-948 ◽  
Author(s):  
G. Marsat ◽  
G. S. Pollack

The omega neuron 1 (ON1) of the cricket Teleogryllus oceanicus responds to conspecific signals (4.5 kHz) and to the ultrasonic echolocation sounds used by hunting, insectivorous bats. These signals differ in temporal structure as well as in carrier frequency. We show that ON1's temporal coding properties vary with carrier frequency, allowing it to encode both of these behaviorally important signals. Information-transfer functions show that coding of 4.5 kHz is limited to the range of amplitude-modulation components that occur in cricket songs (<32 Hz), whereas coding of 30-kHz stimuli extends to the higher pulse rates that occur in bat sounds (∼100 Hz). Nonlinear coding contributes to the information content of ON1's spike train, particularly for 30-kHz stimuli with high intensities and large modulation depths. Phase locking to sinusoidal amplitude envelopes also extends to higher AM frequencies for ultrasound stimuli. ON1s frequency-specific behavior cannot be ascribed to differences in the shapes of information-transfer functions of low- and high-frequency-tuned receptor neurons, both of which are tuned more broadly to AM frequencies than ON1. Coding properties are nearly unaffected by contralateral deafferentation. ON1's role in auditory processing is to increase binaural contrast through contralateral inhibition. We hypothesize that its frequency-specific temporal coding properties optimize binaural contrast for sounds with both the spectral and temporal features of behaviorally relevant signals.


2013 ◽  
Vol 110 (3) ◽  
pp. 587-606 ◽  
Author(s):  
Y. Zheng ◽  
M. A. Escabí

Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues.


2018 ◽  
Vol 120 (6) ◽  
pp. 2939-2952 ◽  
Author(s):  
Samira Anderson ◽  
Robert Ellis ◽  
Julie Mehta ◽  
Matthew J. Goupell

The effects of aging and stimulus configuration on binaural masking level differences (BMLDs) were measured behaviorally and electrophysiologically, using the frequency-following response (FFR) to target brainstem/midbrain encoding. The tests were performed in 15 younger normal-hearing (<30 yr) and 15 older normal-hearing (>60 yr) participants. The stimuli consisted of a 500-Hz target tone embedded in a narrowband (50-Hz bandwidth) or wideband (1,500-Hz bandwidth) noise masker. The interaural phase conditions included NoSo (tone and noise presented interaurally in-phase), NoSπ (noise presented interaurally in-phase and tone presented out-of-phase), and NπSo (noise presented interaurally out-of-phase and tone presented in-phase) configurations. In the behavioral experiment, aging reduced the magnitude of the BMLD. The magnitude of the BMLD was smaller for the NoSo–NπSo threshold difference compared with the NoSo–NoSπ threshold difference, and it was also smaller in narrowband compared with wideband conditions, consistent with previous measurements. In the electrophysiology experiment, older participants had reduced FFR magnitudes and smaller differences between configurations. There were significant changes in FFR magnitude between the NoSo to NoSπ configurations but not between the NoSo to NπSo configurations. The age-related reduction in FFR magnitudes suggests a temporal processing deficit, but no correlation was found between FFR magnitudes and behavioral BMLDs. Therefore, independent mechanisms may be contributing to the behavioral and neural deficits. Specifically, older participants had higher behavioral thresholds than younger participants for the NoSπ and NπSo configurations but had equivalent thresholds for the NoSo configuration. However, FFR magnitudes were reduced in older participants across all configurations. NEW & NOTEWORTHY Behavioral and electrophysiological testing reveal an aging effect for stimuli presented in wideband and narrowband noise conditions, such that behavioral binaural masking level differences and subcortical spectral magnitudes are reduced in older compared with younger participants. These deficits in binaural processing may limit the older participant's ability to use spatial cues to understand speech in environments containing competing sound sources.


1988 ◽  
Vol 60 (6) ◽  
pp. 1799-1822 ◽  
Author(s):  
G. Langner ◽  
C. E. Schreiner

1. Temporal properties of single- and multiple-unit responses were investigated in the inferior colliculus (IC) of the barbiturate-anesthetized cat. Approximately 95% of recording sites were located in the central nucleus of the inferior colliculus (ICC). Responses to contralateral stimulation with tone bursts and amplitude-modulated tones (100% sinusoidal modulation) were recorded. Five response parameters were determined for neurons at each location: 1) characteristic frequency (CF); 2) onset latency of responses to CF-tones 60 dB above threshold; 3) Q10 dB (CF divided by bandwidth of tuning curve 10 dB above threshold); 4) best modulation frequency for firing rate (rBMF or BMF; amplitude modulation frequency that elicited the highest firing rate); and 5) best modulation frequency for synchronization (sBMF; amplitude modulation frequency that elicited the highest degree of phase-locking to the modulation frequency). 2. Response characteristics for single units and multiple units corresponded closely. A BMF was obtained at almost all recording sites. For units with a similar CF, a range of BMFs was observed. The upper limit of BMF increased approximately proportional to CF/4 up to BMFs as high as 1 kHz. The lower limit of encountered BMFs for a given CF also increased slightly with CF. BMF ranges for single-unit and multiple-unit responses were similar. Twenty-three percent of the responses revealed rBMFs between 10 and 30 Hz, 51% between 30 and 100 Hz, 18% between 100 and 300 Hz, and 8% between 300 and 1000 Hz. 3. For single units with modulation transfer functions of bandpass characteristics, BMFs determined for firing rate and synchronization were similar (r2 = 0.95). 4. Onset latencies for responses to CF tones 60 dB above threshold varied between 4 and 120 ms. Ninety percent of the onset latencies were between 5 and 18 ms. A range of onset latencies was recorded for different neurons with any given CF. The onset response latency of a given unit or unit cluster was significantly correlated with the period of the BMF and the period of the CF (P less than 0.05). 5."Intrinsic oscillations" of short duration, i.e., regularly timed discharges of units in response to stimuli without a corresponding temporal structure, were frequently observed in the ICC. Oscillation intervals were commonly found to be integer multiples of 0.4 ms. Changes of stimulus frequency or intensity had only minor influences on these intrinsic oscillations.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document