scholarly journals Termination Zones of Functionally Characterized Spinothalamic Tract Neurons Within the Primate Posterior Thalamus

2008 ◽  
Vol 100 (4) ◽  
pp. 2026-2037 ◽  
Author(s):  
Steve Davidson ◽  
Xijing Zhang ◽  
Sergey G. Khasabov ◽  
Donald A. Simone ◽  
Glenn J. Giesler

The primate posterior thalamus has been proposed to contribute to pain sensation, but its precise role is unclear. This is in part because spinothalamic tract (STT) neurons that project to the posterior thalamus have received little attention. In this study, antidromic mapping was used to identify individual STT neurons with axons that projected specifically to the posterior thalamus in Macaca fascicularis. Each axon was located by antidromic activation at low stimulus amplitudes (<30 μA) and was then surrounded distally by a grid of stimulating points in which 500-μA stimuli were unable to activate the axon antidromically, thereby indicating the termination zone. Several nuclei within the posterior thalamus were targets of STT neurons: the posterior nucleus, suprageniculate nucleus, magnocellular part of the medial geniculate nucleus, and limitans nucleus. STT neurons projecting to the ventral posterior inferior nucleus were also studied. Twenty-five posterior thalamus-projecting STT neurons recorded in lumbar spinal cord were characterized by their responses to mechanical, thermal, and chemical stimuli. Sixteen of 25 neurons were recorded in the marginal zone and the balance was located within the deep dorsal horn. Thirteen neurons were classified as wide dynamic range and 12 as high threshold. One-third of STT neurons projecting to posterior thalamus responded to noxious heat (50°C). Two-thirds of those tested responded to cooling. Seventy-one percent responded to an intradermal injection of capsaicin. These data indicate that the primate STT transmits noxious and innocuous mechanical, thermal, and chemical information to multiple posterior thalamic nuclei.

1994 ◽  
Vol 71 (3) ◽  
pp. 959-980 ◽  
Author(s):  
R. J. Dado ◽  
J. T. Katter ◽  
G. J. Giesler

1. Seventy-seven neurons in the cervical enlargement of rats anesthetized with urethan were initially antidromically activated using currents < or = 30 microA from the contralateral posterior thalamus. A goal of these experiments was to determine the course of physiologically characterized spinal axons within the diencephalon. Therefore, in 38 cases, additional antidromic mapping was done throughout the mediolateral extent of the diencephalon at multiple anterior-posterior planes. 2. Electrolytic lesions marking the recording sites were recovered for 71 neurons. Thirty-one were located in the superficial dorsal horn (SDH); 39 were in nucleus proprius or the lateral reticulated area of the deep dorsal horn (DDH), and one was in the ventral horn. 3. Eight of 38 (21%) neurons that were tested for more anterior projections could only be antidromically activated with currents < or = 30 microA from sites in the contralateral posterior thalamus. Such neurons are referred to as spinothalamic tract (STT) neurons. Lesions marking the lowest threshold points for antidromic activation were located in or near the posterior thalamic group (Po). At more anterior levels, considerably higher currents were required for antidromic activation or it was not possible to activate the neurons with currents up to 500 microA. Four of these neurons were physiologically characterized and each responded preferentially to noxious mechanical stimuli (wide dynamic range, WDR). Each of the three neurons that were tested responded to noxious heat stimuli. These findings confirm anatomic studies that have shown that a number of STT axons terminate in Po and suggest that such axons that originate in the cervical enlargement carry nociceptive input from the upper extremity. 4. In 15 cases, electrode penetrations were made systematically throughout much of the contralateral ventrobasal complex (VbC). In 17 cases, penetrations were made throughout the intralaminar nuclei contralaterally, including the central lateral nucleus (CL). Surprisingly, only one of the examined axons was antidromically activated with low currents from CL and one from VbC, although both of these nuclei are known to receive sizeable inputs from the STT. 5. Many of the axons (27 of the 38 tested, 71%) that were initially antidromically activated from the contralateral posterior thalamus could also be antidromically activated with low currents (< or = 30 microA) and at increased latencies from sites located anteriorly in the contralateral hypothalamus. Such neurons are referred to as spinothalamic tract/spinohypothalamic tract (STT/SHT) neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 66 (1) ◽  
pp. 83-102 ◽  
Author(s):  
M. V. Smith ◽  
A. V. Apkarian ◽  
C. J. Hodge

1. The upper cervical spinal cord contains over one-third of the cells of the spinothalamic tract (STT). This study investigated response properties of contralaterally projecting STT neurons in C2 of the cat by the use of single-unit, microelectrode recordings. Standard antidromic stimulation and collision techniques were used to identify STT units projecting to the contralateral thalamus. Once an STT unit was found, its receptive field (RF) and responses to cutaneous stimuli such as touch, pressure, deep muscle squeeze, tap, noxious pinch, and heat were characterized. C2 units that were not activated from the contralateral thalamus (non-STT units) were also characterized. The locations of thalamic stimulation electrodes and spinal recording sites were reconstructed from electrolytic lesions. 2. A total of 48 STT and 68 non-STT units were well characterized. RF sizes were classified as small, intermediate, large, or whole body. Each unit was also classified as having one of two possible response types: simple units were those with homogeneous responses within the RF and were classified as low threshold (LT), high threshold (HT), wide dynamic range (WDR), deep, or tap. Complex units were those that responded differently in different regions of the RF. 3. The average depth of non-STT units subdivided by RF size was 2.1 +/- 0.6 (SD) mm for cells with small RFs, 2.4 +/- 0.8 mm for cells with intermediate RFs, 2.8 +/- 0.3 mm for cells with large RFs, and 2.7 +/- 0.5 mm for cells with whole-body RFs. The average depth of non-STT units based on response type was 2.0 +/- 0.5 mm for LT, 2.3 +/- 0.7 mm for HT, 2.1 +/- 0.7 mm for WDR, 2.6 +/- 0.9 mm for deep, 2.6 +/- 0.5 mm for tap, and 2.4 +/- 0.2 mm for complex. 4. A somatotopic organization along the rostrocaudal length of C2 and upper C3 was observed for non-STT units with small- and intermediate-size RFs. The average distance of the recording sites from the rostralmost dorsal rootlet of C2 was 3.8 +/- 2.1 mm for units with RFs on the face, 7.1 +/- 4.3 mm for units with RFs on the neck, and 11.9 +/- 5.1 mm for units with RFs on the forelimb. 5. The average threshold for antidromic activation of STT units was 175 +/- 120 microA. Most C2 STT units were activated from the ventroposterior region of the thalamus.(ABSTRACT TRUNCATED AT 400 WORDS)


2004 ◽  
Vol 91 (1) ◽  
pp. 213-222 ◽  
Author(s):  
Donald A. Simone ◽  
Xijing Zhang ◽  
Jun Li ◽  
Jun-Ming Zhang ◽  
Christopher N. Honda ◽  
...  

We investigated the role of mechanosensitive spinothalamic tract (STT) neurons in mediating 1) the itch evoked by intradermal injection of histamine, 2) the enhanced sense of itch evoked by innocuous stroking (alloknesis), and 3) the enhanced pain evoked by punctate stimulation (hyperalgesia) of the skin surrounding the injection site. Responses to intradermal injections of histamine and capsaicin were compared in STT neurons recorded in either the superficial or the deep dorsal horn of the anesthetized monkey. Each neuron was identified by antidromic activation from the ventral posterior lateral nucleus of thalamus and classified by its initial responses to mechanical stimuli as wide dynamic range (WDR) or high-threshold (HT). Approximately half of the WDRs and one of the HTs responded weakly to histamine, some with a duration > 5 min, the maximal time allotted. WDRs but not HTs exhibited a significant increase in response to punctate stimulation after histamine consistent with their possible role in mediating histamine-induced hyperalgesia. Neither type of neuron exhibited significant changes in response to stroking, consistent with their unlikely role in mediating alloknesis. Furthermore, nearly all STT neurons exhibited vigorous and persistent responses to capsaicin, after which they became sensitized to stroking and to punctate stimulation. We conclude that the STT neurons in our sample are more likely to contribute to pain, allodynia, and hyperalgesia than to itch and alloknesis.


2000 ◽  
Vol 84 (3) ◽  
pp. 1180-1185 ◽  
Author(s):  
Xijing Zhang ◽  
Christopher N. Honda ◽  
Glenn J. Giesler

Percutaneous upper cervical cordotomy continues to be performed on patients suffering from several types of severe chronic pain. It is believed that the operation is effective because it cuts the spinothalamic tract (STT), a primary pathway carrying nociceptive information from the spinal cord to the brain in humans. In recent years, there has been controversy regarding the location of STT axons within the spinal cord. The aim of this study was to determine the locations of STT axons within the spinal cord white matter of C2 segment in monkeys using methods of antidromic activation. Twenty lumbar STT cells were isolated. Eleven were classified as wide dynamic range neurons, six as high-threshold cells, and three as low-threshold cells. Eleven STT neurons were recorded in the deep dorsal horn and nine in superficial dorsal horn. The axons of the examined neurons were located at antidromic low-threshold points (<30 μA) within the contralateral lateral funiculus of C2. All low-threshold points were located ventral to the denticulate ligament, within the lateral half of the ventral lateral funiculus (VLF). None were found in the dorsal half of the lateral funiculus. The present findings support our previous suggestion that STT axons migrate ventrally as they ascend the length of the spinal cord. Also, the present findings indicate that surgical cordotomies that interrupt the VLF in C2 likely disrupt the entire lumbar STT.


2016 ◽  
Vol 116 (1) ◽  
pp. 159-170 ◽  
Author(s):  
Ryan Patel ◽  
Anthony H. Dickenson

Neuropathic pain represents a substantial clinical challenge; understanding the underlying neural mechanisms and back-translation of therapeutics could aid targeting of treatments more effectively. The ventral posterior thalamus (VP) is the major termination site for the spinothalamic tract and relays nociceptive activity to the somatosensory cortex; however, under neuropathic conditions, it is unclear how hyperexcitability of spinal neurons converges onto thalamic relays. This study aimed to identify neural substrates of hypersensitivity and the influence of pregabalin on central processing. In vivo electrophysiology was performed to record from VP wide dynamic range (WDR) and nociceptive-specific (NS) neurons in anesthetized spinal nerve-ligated (SNL), sham-operated, and naive rats. In neuropathic rats, WDR neurons had elevated evoked responses to low- and high-intensity punctate mechanical stimuli, dynamic brushing, and innocuous and noxious cooling, but less so to heat stimulation, of the receptive field. NS neurons in SNL rats also displayed increased responses to noxious punctate mechanical stimulation, dynamic brushing, noxious cooling, and noxious heat. Additionally, WDR, but not NS, neurons in SNL rats exhibited substantially higher rates of spontaneous firing, which may correlate with ongoing pain. The ratio of WDR-to-NS neurons was comparable between SNL and naive/sham groups, suggesting relatively few NS neurons gain sensitivity to low-intensity stimuli leading to a “WDR phenotype.” After neuropathy was induced, the proportion of cold-sensitive WDR and NS neurons increased, supporting the suggestion that changes in frequency-dependent firing and population coding underlie cold hypersensitivity. In SNL rats, pregabalin inhibited mechanical and heat responses but not cold-evoked or elevated spontaneous activity.


1979 ◽  
Vol 42 (5) ◽  
pp. 1354-1369 ◽  
Author(s):  
J. M. Chung ◽  
D. R. Kenshalo ◽  
K. D. Gerhart ◽  
W. D. Willis

1. The responses of spinothalamic tract cells in the lumbosacral spinal cords of anesthetized monkeys were examined following electrical stimulation of the sural nerve or the application of noxious thermal and mechanical stimuli to the skin on the lateral aspect of the foot. 2. The spinothalamic tract neurons were classified as wide dynamic range (WDR), high-threshold (HT), or low-threshold (LT) cells on the basis of their responses to mechanical stimuli. 3. All of the WDR and HT spinothalamic tract cells tested responded to volleys in A- and C-fibers. However, strong C-fiber responses were more common in HT than in WDR cells. 4. The responses atributed to C-fibers were graded with the size of the C-fiber volley. The latencies of the responses attributed to C-fibers indicated that the fastest afferents involved had a mean conduction velocity of 0.9 m/s. The responses remained after anodal blockade of conduction in A-fibers. 5. Temporal summation of the responses of spinothalamic tract cells was demonstrated both to brief trains of stimuli at 33 Hz and to single stimuli repeated at 1- to 2-s intervals. The latter phenomenon is often called "windup." 6. The responses of several spinothalamic tract cells to noxious heat pulses could still be elicited during anodal blockade of conduction in A-fibers. Similarly, it was possible to demonstrate an excitatory action of noxious mechanical stimuli despite interference with conduction in A-fibers by anodal current. 7. The cells investigated were located either in the marginal zone or in the layers of the dorsal horn equivalent to Rexed's laminae IV-VI in the cat. The cells were generally activated antidromically from the caudal part of the ventral posterior lateral nucleus of the thalamus.


1996 ◽  
Vol 75 (6) ◽  
pp. 2581-2605 ◽  
Author(s):  
J. T. Katter ◽  
R. J. Dado ◽  
E. Kostarczyk ◽  
G. J. Giesler

1. A goal of this study was to determine the sites in the diencephalon to which neurons in sacral spinal segments of rats project. Therefore, 95 neurons were recorded extracellularly in spinal segments L6-S2 of rats that were anesthetized with urethan. These neurons were activated initially antidromically with currents < or = 30 microA from a monopolar stimulating electrode placed into the contralateral posterior diencephalon. The mean +/- SE current for antidromic activation from these sites was 16 +/- 0.8 microA. These neurons were recorded in the superficial dorsal horn (4%), deep dorsal horn (89%), and intermediate zone and ventral horn (4%). 2. Systematic antidromic mapping techniques were used to map the axonal projections of 41 of these neurons within the diencephalon. Thirty-three neurons (80%) could be activated antidromically with currents < or = 30 microA only from points in the contralateral thalamus and are referred to as spinothalamic tract (STT) neurons. Eight neurons (20%) were activated antidromically with low currents from points in both the contralateral thalamus and hypothalamus, and these neurons are referred to as spinothalamic tract/ spinohypothalamic tract (STT/SHT) neurons. Three additional neurons were activated antidromically with currents < or = 30 microA only from points within the contralateral hypothalamus and are referred to as spinohypothalamic tract (SHT) neurons. The diencephalic projections of another 51 neurons were mapped incompletely. These neurons are referred to as spinothalamic/unknown (STT/ U) neurons to indicate that it was not known whether their axons ascended beyond the site in the thalamus from which they initially were activated antidromically. 3. For 31 STT neurons, the most anterior point at which antidromic activation was achieved with currents < or = 30 microA was determined. Fourteen (45%) were activated antidromically only from sites posterior to the ventrobasal complex (VbC) of the thalamus. Sixteen STT neurons (52%) were activated antidromically with low currents from sites at the level of the VbC, but not from more anterior levels. One STT neuron (3%) was activated antidromically from the anteroventral nucleus of the thalamus. 4. STT/SHT neurons were antidromically activated with currents < or = 30 microA from the medial lemniscus (ML), anterior pretectal nucleus (APt), posterior nuclear group and medial geniculate nucleus (Po/MG), and zona incerta in the thalamus and from the optic tract (OT), supraoptic decussation, or lateral area of the hypothalamus. No differences in the sites in the thalamus from which STT and STT/SHT neurons were activated antidromically were apparent. Five STT/SHT neurons (62%) were activated antidromically from points in the thalamus in the posterior diencephalon and from points in the hypothalamus at more anterior levels. Three STT/SHT neurons (38%) were activated antidromically with currents < or = 30 microA from sites in both the thalamus and hypothalamus at the same anterior-posterior level of the diencephalon. All three of these STT/SHT neurons projected to the intralaminar nuclei (parafascicular or central lateral nuclei) of the thalamus. 5. Seven STT/SHT neurons were tested for additional projections to the ipsilateral brain. Two (29%) were activated antidromically with currents < or = 30 microA and at longer latencies from sites in the ipsilateral diencephalon. One could only be activated antidromically from the hypothalamus ipsilaterally. The other was activated antidromically at progressively increasing latencies from points in the ipsilateral brain that extended as far posteriorly as the posterior pole of the MG. 6. Fifty-eight STT, STT/SHT, and STT/U neurons were classified as low-threshold (LT), wide dynamic range (WDR), or highthreshold (HT) neurons based on their responsiveness to innocuous and noxious mechanical stimuli applied to their cutaneous receptive fields.(ABSTRACT TRUNCATED)


2005 ◽  
Vol 93 (5) ◽  
pp. 2552-2564 ◽  
Author(s):  
Xijing Zhang ◽  
Glenn J. Giesler

A sizeable number of spinothalamic tract axons terminate in the posterior thalamus. The functional roles and precise areas of termination of these axons have been a subject of recent controversy. The goals of this study were to identify spinothalamic tract neurons (STT) within the cervical enlargement that project to this area, characterize their responses to mechanical and thermal stimulation of their receptive fields, and use microantidromic tracking methods to determine the nuclei in which their axons terminate. Forty-seven neurons were antidromically activated using low-amplitude (≤30 μA) current pulses in the contralateral posterior thalamus. The 51 points at which antidromic activation thresholds were lowest were surrounded by ineffective tracks indicating that the surrounded axons terminated within the posterior thalamus. The areas of termination were located primarily in the posterior triangular, medial geniculate, posterior and posterior intralaminar, and suprageniculate nuclei. Recording points were located in the superficial and deep dorsal horn. The mean antidromic conduction velocity was 6.4 m/s, a conduction velocity slower than that of other projections to the thalamus or hypothalamus in rats. Cutaneous receptive fields appeared to be smaller than those of neurons projecting to other areas of the thalamus or to the hypothalamus. Each of the examined neurons responded exclusively or preferentially to noxious stimuli. These findings indicate that the STT carries nociceptive information to several target nuclei within the posterior thalamus. We discuss the evidence that this projection provides nociceptive information that plays an important role in fear conditioning.


2012 ◽  
Vol 108 (6) ◽  
pp. 1711-1723 ◽  
Author(s):  
Steve Davidson ◽  
Xijing Zhang ◽  
Sergey G. Khasabov ◽  
Hannah R. Moser ◽  
Christopher N. Honda ◽  
...  

Itch of peripheral origin requires information transfer from the spinal cord to the brain for perception. Here, primate spinothalamic tract (STT) neurons from lumbar spinal cord were functionally characterized by in vivo electrophysiology to determine the role of these cells in the transmission of pruriceptive information. One hundred eleven STT neurons were identified by antidromic stimulation and then recorded while histamine and cowhage (a nonhistaminergic pruritogen) were sequentially applied to the cutaneous receptive field of each cell. Twenty percent of STT neurons responded to histamine, 13% responded to cowhage, and 2% responded to both. All pruriceptive STT neurons were mechanically sensitive and additionally responded to heat, intradermal capsaicin, or both. STT neurons located in the superficial dorsal horn responded with greater discharge and longer duration to pruritogens than STT neurons located in the deep dorsal horn. Pruriceptive STT neurons discharged in a bursting pattern in response to the activating pruritogen and to capsaicin. Microantidromic mapping was used to determine the zone of termination for pruriceptive STT axons within the thalamus. Axons from histamine-responsive and cowhage-responsive STT neurons terminated in several thalamic nuclei including the ventral posterior lateral, ventral posterior inferior, and posterior nuclei. Axons from cowhage-responsive neurons were additionally found to terminate in the suprageniculate and medial geniculate nuclei. Histamine-responsive STT neurons were sensitized to gentle stroking of the receptive field after the response to histamine, suggesting a spinal mechanism for alloknesis. The results show that pruriceptive information is encoded by polymodal STT neurons in histaminergic or nonhistaminergic pathways and transmitted to the ventrobasal complex and posterior thalamus in primates.


1988 ◽  
Vol 59 (3) ◽  
pp. 886-907 ◽  
Author(s):  
D. G. Ferrington ◽  
J. W. Downie ◽  
W. D. Willis

1. Recordings were made from 67 neurons in the nucleus gracilis (NG) of anesthetized macaque monkeys. All of the cells were activated antidromically from the ventral posterior lateral (VPL) nucleus of the contralateral thalamus. Stimuli used to activate the cells orthodromically were graded innocuous and noxious mechanical stimuli, including sinusoidal vibration and thermal pulses. 2. The latencies of antidromic action potentials following stimulation in the VPL nucleus were significantly shorter for cells in the caudal compared with the rostral NG. The mean minimum afferent conduction velocity of the afferent conduction velocity of the afferent fibers exciting the NG cells was 52 m/s, as judged from the latencies of the cells to orthodromic volleys evoked by electrical stimulation of peripheral nerves. The overall conduction velocity of the pathway from peripheral nerve to thalamus was approximately 40 m/s. 3. Cutaneous receptive fields on the distal hindlimb usually occupied an area equivalent to much less than a single digit. However, a few cells had receptive fields up to or exceeding the area of the foot. 4. NG cells were classified by their responses to graded mechanical stimulation of the skin as low threshold (LT) or wide dynamic range (WDR). No high-threshold NG cells were found. A special subcategory of pressure-sensitive LT (SA) neurons was recognized. Many of these cells were maximally responsive to maintained indentation of the skin. The sample of NG cells differed from the population of primate spinothalamic and spinocervicothalamic pathways so far examined, in having a larger proportion of LT neurons and a smaller proportion of WDR cells. A few NG cells responded best to manipulation of subcutaneous tissue. 5. Discriminant analysis permitted the NG cells to be assigned to classes determined by a k-means cluster analysis of the responses of a reference set of 318 primate spinothalamic tract (STT) cells. There were four classes of cells based on normalized responses of individual neurons and another four classes based upon responses compared across the population of cells. The NG cells were allocated to the various categories in different proportions than either primate STT cells or spinocervicothalamic neurons, consistent with the view that the functional roles of these somatosensory pathways differ. 6. Some of the pressure-sensitive NG cells were excited when the skin was stretched, suggesting an input from type II slowly adapting (Ruffini) mechanoreceptors.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document