Position of Spinothalamic Tract Axons in Upper Cervical Spinal Cord of Monkeys

2000 ◽  
Vol 84 (3) ◽  
pp. 1180-1185 ◽  
Author(s):  
Xijing Zhang ◽  
Christopher N. Honda ◽  
Glenn J. Giesler

Percutaneous upper cervical cordotomy continues to be performed on patients suffering from several types of severe chronic pain. It is believed that the operation is effective because it cuts the spinothalamic tract (STT), a primary pathway carrying nociceptive information from the spinal cord to the brain in humans. In recent years, there has been controversy regarding the location of STT axons within the spinal cord. The aim of this study was to determine the locations of STT axons within the spinal cord white matter of C2 segment in monkeys using methods of antidromic activation. Twenty lumbar STT cells were isolated. Eleven were classified as wide dynamic range neurons, six as high-threshold cells, and three as low-threshold cells. Eleven STT neurons were recorded in the deep dorsal horn and nine in superficial dorsal horn. The axons of the examined neurons were located at antidromic low-threshold points (<30 μA) within the contralateral lateral funiculus of C2. All low-threshold points were located ventral to the denticulate ligament, within the lateral half of the ventral lateral funiculus (VLF). None were found in the dorsal half of the lateral funiculus. The present findings support our previous suggestion that STT axons migrate ventrally as they ascend the length of the spinal cord. Also, the present findings indicate that surgical cordotomies that interrupt the VLF in C2 likely disrupt the entire lumbar STT.

2000 ◽  
Vol 83 (5) ◽  
pp. 2869-2880 ◽  
Author(s):  
Xijing Zhang ◽  
Heather N. Wenk ◽  
Christopher N. Honda ◽  
Glenn J. Giesler

The spinothalamic tract (STT) is the primary pathway carrying nociceptive information from the spinal cord to the brain in humans. The aim of this study was to understand better the organization of STT axons within the spinal cord white matter of monkeys. The location of STT axons was determined using method of antidromic activation. Twenty-six lumbar STT cells were isolated. Nineteen were classified as wide dynamic range neurons and seven as high-threshold cells. Fifteen STT neurons were recorded in the deep dorsal horn (DDH) and 11 in superficial dorsal horn (SDH). The axons of 26 STT neurons were located at 73 low-threshold points (<30 μA) within the lateral funiculus from T9 to C6. STT neurons in the SDH were activated from 33 low-threshold points, neurons in the DDH from 40 low-threshold points. In lower thoracic segments, SDH neurons were antidromically activated from low-threshold points at the dorsal-ventral level of the denticulate ligament. Neurons in the DDH were activated from points located slightly ventral, within the ventral lateral funiculus. At higher segmental levels, axons from SDH neurons continued in a position dorsal to those of neurons in the DDH. However, axons from neurons in both areas of the gray matter were activated from points located in more ventral positions within the lateral funiculus. Unlike the suggestions in several previous reports, the present findings indicate that STT axons originating in the lumbar cord shift into increasingly ventral positions as they ascend the length of the spinal cord.


1991 ◽  
Vol 66 (1) ◽  
pp. 83-102 ◽  
Author(s):  
M. V. Smith ◽  
A. V. Apkarian ◽  
C. J. Hodge

1. The upper cervical spinal cord contains over one-third of the cells of the spinothalamic tract (STT). This study investigated response properties of contralaterally projecting STT neurons in C2 of the cat by the use of single-unit, microelectrode recordings. Standard antidromic stimulation and collision techniques were used to identify STT units projecting to the contralateral thalamus. Once an STT unit was found, its receptive field (RF) and responses to cutaneous stimuli such as touch, pressure, deep muscle squeeze, tap, noxious pinch, and heat were characterized. C2 units that were not activated from the contralateral thalamus (non-STT units) were also characterized. The locations of thalamic stimulation electrodes and spinal recording sites were reconstructed from electrolytic lesions. 2. A total of 48 STT and 68 non-STT units were well characterized. RF sizes were classified as small, intermediate, large, or whole body. Each unit was also classified as having one of two possible response types: simple units were those with homogeneous responses within the RF and were classified as low threshold (LT), high threshold (HT), wide dynamic range (WDR), deep, or tap. Complex units were those that responded differently in different regions of the RF. 3. The average depth of non-STT units subdivided by RF size was 2.1 +/- 0.6 (SD) mm for cells with small RFs, 2.4 +/- 0.8 mm for cells with intermediate RFs, 2.8 +/- 0.3 mm for cells with large RFs, and 2.7 +/- 0.5 mm for cells with whole-body RFs. The average depth of non-STT units based on response type was 2.0 +/- 0.5 mm for LT, 2.3 +/- 0.7 mm for HT, 2.1 +/- 0.7 mm for WDR, 2.6 +/- 0.9 mm for deep, 2.6 +/- 0.5 mm for tap, and 2.4 +/- 0.2 mm for complex. 4. A somatotopic organization along the rostrocaudal length of C2 and upper C3 was observed for non-STT units with small- and intermediate-size RFs. The average distance of the recording sites from the rostralmost dorsal rootlet of C2 was 3.8 +/- 2.1 mm for units with RFs on the face, 7.1 +/- 4.3 mm for units with RFs on the neck, and 11.9 +/- 5.1 mm for units with RFs on the forelimb. 5. The average threshold for antidromic activation of STT units was 175 +/- 120 microA. Most C2 STT units were activated from the ventroposterior region of the thalamus.(ABSTRACT TRUNCATED AT 400 WORDS)


1984 ◽  
Vol 51 (3) ◽  
pp. 450-466 ◽  
Author(s):  
K. D. Gerhart ◽  
R. P. Yezierski ◽  
T. K. Wilcox ◽  
W. D. Willis

Recordings were made from spinothalamic tract (STT) cells in the lumbosacral enlargement of anesthetized monkeys. The cells were identified by antidromic activation from the contralateral ventral posterior lateral nucleus of the thalamus. Electrical stimulation at sites within the periaqueductal gray, the adjacent midbrain reticular formation, or the deep layers of the tectum were found to inhibit the activity of STT cells. In general, midbrain stimulation inhibited the background discharges and the responses of wide dynamic range cells evoked by innocuous and noxious cutaneous stimulation (29 of 37 cases). However, for six cells, midbrain stimulation preferentially inhibited the responses to noxious stimulation. The evoked responses of all 10 high-threshold cells were inhibited. In only two cases was midbrain stimulation ineffective, and no excitatory effects were observed. The mean latency to onset of inhibition resulting from midbrain stimulation was 24.9 +/- 7.2 ms (n = 35). The amount of inhibition produced by midbrain stimulation was graded with stimulus intensity. For example, trains of stimuli (333 Hz) at 50 microA produced a mean inhibition to 81.7 +/- 16.6% of control, while 200 microA resulted in a mean inhibition to 36.3 +/- 21.7%. Not only was the inhibition increased by the use of stronger current intensities, but the duration of inhibition was prolonged. Midbrain stimulation inhibited the responses of STT cells to volleys in both the A-fibers and the C-fibers of the sural nerve. However, there was a selective action in that the responses to C-fiber volleys were more strongly inhibited than were the responses to A-fiber volleys. Lesions placed in the white matter of the upper cervical spinal cord reduced the inhibition produced by stimulation in either the midbrain or the nucleus raphe magnus. The extent to which the inhibition was reduced was proportional to the extent of the cord lesions. However, even when there was an interruption of the entire lateral funiculus on the side of an STT cell and of the dorsal quadrant of the contralateral side, there was still substantial inhibition following stimulation in either brain stem site. It is concluded that while part of the inhibition is mediated by pathways descending in the dorsal lateral funiculus (DLF), at least some depends on pathways coursing through the ventral spinal cord. Inhibition of STT cells may contribute to the neuronal mechanism of the analgesia that results from stimulation in the periaqueductal gray matter in awake, behaving animals.


1994 ◽  
Vol 72 (6) ◽  
pp. 2590-2597 ◽  
Author(s):  
J. W. Leem ◽  
B. H. Lee ◽  
W. D. Willis ◽  
J. M. Chung

1. A set of 11 cutaneous stimuli defined previously to differentiate among different types of cutaneous sensory receptors in the rat hindpaw was also effective in differentially activating second-order sensory neurons in the dorsal horn and the gracile nucleus of rats. 2. All sampled units were responsive to more than 1 of the 11 stimuli. However, none responded to innocuous warming or cooling stimuli. Therefore further analysis was restricted to responses to nine of the selected stimuli. 3. Cluster analysis of the responses to nine selected innocuous and noxious mechanical stimuli and noxious thermal stimuli yielded seven classes that seemed functionally distinct from each other: a class of high-threshold neurons, three classes of convergent (wide dynamic range) neurons, a class of a mixture of poorly responsive neurons and neurons receiving Pacinian inputs, and two classes of low-threshold neurons. 4. High-threshold neurons responded predominantly to noxious mechanical and thermal stimuli and presumably received an input from both mechanically and thermally sensitive nociceptors. These cells were located in the dorsal horn, and some were spinothalamic tract cells. Wide dynamic range neurons were excited by innocuous and noxious stimuli, but better by noxious stimuli. These classes of cells were either in the dorsal horn (some were spinothalamic tract cells) or in the nucleus gracilis.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 90 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Yuan Bo Peng ◽  
Qing Dong Ling ◽  
M. A. Ruda ◽  
Daniel R. Kenshalo

Neonatal peripheral inflammation has been shown to produce profound anatomical changes in the dorsal horn of adult rats. In this study, we explored whether parallel physiological changes exist. Neonatal rats were injected with complete Freund's adjuvant (CFA) into the left hind paw. At 8–10 wk of age, single dorsal horn neurons were recorded in response to graded intensities of mechanical stimuli delivered to the receptive field. In addition, cord dorsum potentials, produced by electrical stimuli delivered to the left sciatic nerve at 2.5× threshold, were recorded bilaterally from L2 to S3. There were significant increases in background activity and responses to brush and pinch in neonatal rats that were treated with CFA, as compared with control rats. Further analysis showed similar significant changes when dorsal horn neurons were categorized into wide dynamic range (WDR), high-threshold (HT), and low-threshold (LT) groups. The receptive field was significantly larger in neonatally treated rats as compared with control rats. Additionally, there was a significant increase in the response to a 49°C heat stimulus in neonatally treated rats as compared with control rats. There was also a trend for the amplitudes of N1, N2, and P waves of the cord dorsum potential to increase and latencies to decrease in neonatally treated rats, but no significant differences were detected between different levels of the spinal cord (L2 to S3). These data further support the notion that anatomical and physiological plasticity changes occurred in the spinal cord following early neonatal CFA treatment.


2004 ◽  
Vol 91 (1) ◽  
pp. 213-222 ◽  
Author(s):  
Donald A. Simone ◽  
Xijing Zhang ◽  
Jun Li ◽  
Jun-Ming Zhang ◽  
Christopher N. Honda ◽  
...  

We investigated the role of mechanosensitive spinothalamic tract (STT) neurons in mediating 1) the itch evoked by intradermal injection of histamine, 2) the enhanced sense of itch evoked by innocuous stroking (alloknesis), and 3) the enhanced pain evoked by punctate stimulation (hyperalgesia) of the skin surrounding the injection site. Responses to intradermal injections of histamine and capsaicin were compared in STT neurons recorded in either the superficial or the deep dorsal horn of the anesthetized monkey. Each neuron was identified by antidromic activation from the ventral posterior lateral nucleus of thalamus and classified by its initial responses to mechanical stimuli as wide dynamic range (WDR) or high-threshold (HT). Approximately half of the WDRs and one of the HTs responded weakly to histamine, some with a duration > 5 min, the maximal time allotted. WDRs but not HTs exhibited a significant increase in response to punctate stimulation after histamine consistent with their possible role in mediating histamine-induced hyperalgesia. Neither type of neuron exhibited significant changes in response to stroking, consistent with their unlikely role in mediating alloknesis. Furthermore, nearly all STT neurons exhibited vigorous and persistent responses to capsaicin, after which they became sensitized to stroking and to punctate stimulation. We conclude that the STT neurons in our sample are more likely to contribute to pain, allodynia, and hyperalgesia than to itch and alloknesis.


1995 ◽  
Vol 74 (4) ◽  
pp. 1742-1759 ◽  
Author(s):  
H. L. Fields ◽  
A. Malick ◽  
R. Burstein

1. The rostral ventromedial medulla (RVM) participates in the modulation of nociceptive transmission by spinal cord neurons. Previous anatomic studies have demonstrated that RVM neurons project to laminae I, II, and V of the dorsal horn; laminae VII and VIII of the intermediate and ventral horns; the intermediolateral column; and lamina X. The RVM contains at least three physiologically defined classes of neurons, two of which, the ON and the OFF cells, have been implicated in nociceptive modulation. Because these cells classes are intermingled in the RVM, it has not been possible to determine the spinal laminar projection targets of ON and OFF cells by anatomic methods. Therefore in the current study we employed antidromic microstimulation methods to determine the laminar projections of two of the three classes of RVM neurons, the ON and the OFF cells. 2. In lightly anesthetized (with methohexital sodium) rats, single-unit extracellular recordings were made from 48 RVM neurons that were physiologically characterized as ON (30) or OFF (18) cells. The recording locations of 45 of these neurons were recovered. Thirty-seven were found in the nucleus raphe magnus and eight were located near its dorsal and lateral borders. 3. Thirty-two physiologically identified RVM neurons (18 ON and 14 OFF cells) were antidromically activated from the cervical spinal cord using a monopolar stimulating electrode. The stimulating electrode was moved systematically in the white matter until antidromic activation could be produced with currents of < or = 20 microA (6.1 +/- 0.7 microA, mean +/- SE). The points from which minimum currents were required to antidromically activate the neurons were located mainly in the ipsilateral dorsolateral funiculus (DLF) (27 of 32). In a few cases, lowest antidromic threshold currents were found near the border between the DLF and ventrolateral funiculus (VLF) or, rarely, in the VLF itself. In these cases, the cell recordings were found to be near the dorsal boundary of the RVM. 4. While one electrode was used to stimulate the parent axon in the lateral funiculus, a second was used to explore the gray matter for the presence of collateral branches. The identification of a branch was initially determined by an increase in antidromic latency. At the same rostrocaudal plane of the spinal cord, stimulation of the DLF induced an antidromic spike that invaded the neuron earlier than the antidromic spike elicited by stimulation in the gray matter. Collateral branches were confirmed by establishing that the location of the minimum threshold point for antidromic activation of the neurons from the second electrode was in the gray matter, that the minimum current required to antidromically activate the neuron from that point was too low to activate the parent axon in the DLF, and that a collision occurred between the spikes induced by the two stimulating electrodes. 5. In 17 cases, physiologically identified RVM neurons (10 ON and 7 OFF cells) were antidromically activated from the gray matter of the cervical spinal cord using a current of 8.4 +/- 2.1 (SE) microA. Minimum threshold points for antidromic activation were found in laminae I-II (3 ON and 4 OFF cells), lamina V (5 ON and 6 OFF cells), and regions ventral to the lateral reticulated area (3 ON and 2 OFF cells) of the gray matter. As indicated by these numbers, some neurons were antidromically activated from more than one gray matter region. In general, all OFF cells and 9 of 10 ON cells were antidromically activated from low threshold points in either laminae I-II or lamina V. 6. In six cases, neurons were activated from separate points located in two or three different laminae of the gray matter. Three OFF cells were activated from laminae I-II and V, one OFF cell and one ON cell were activated from lamina V and from more ventral points, and one ON cell was activated from laminae I-II and from points ventral to lamina V.


2000 ◽  
Vol 84 (4) ◽  
pp. 2078-2112 ◽  
Author(s):  
Amy Malick ◽  
Rew M. Strassman ◽  
Rami Burstein

Sensory information that arises in orofacial organs facilitates exploratory, ingestive, and defensive behaviors that are essential to overall fitness and survival. Because the hypothalamus plays an important role in the execution of these behaviors, sensory signals conveyed by the trigeminal nerve must be available to this brain structure. Recent anatomical studies have shown that a large number of neurons in the upper cervical spinal cord and caudal medulla project directly to the hypothalamus. The goal of the present study was to identify the types of information that these neurons carry to the hypothalamus and to map the route of their ascending axonal projections. Single-unit recording and antidromic microstimulation techniques were used to identify 81 hypothalamic-projecting neurons in the caudal medulla and upper cervical (C1) spinal cord that exhibited trigeminal receptive fields. Of the 72 neurons whose locations were identified, 54 were in laminae I–V of the dorsal horn at the level of C1 ( n = 22) or nucleus caudalis (Vc, n = 32) and were considered trigeminohypothalamic tract (THT) neurons because these regions are within the main projection territory of trigeminal primary afferent fibers. The remaining 18 neurons were in the adjacent lateral reticular formation (LRF) and were considered reticulohypothalamic tract (RHT) neurons. The receptive fields of THT neurons were restricted to the innervation territory of the trigeminal nerve and included the tongue and lips, cornea, intracranial dura, and vibrissae. Based on their responses to mechanical stimulation of cutaneous or intraoral receptive fields, the majority of THT neurons were classified as nociceptive (38% high-threshold, HT, 42% wide-dynamic-range, WDR), but in comparison to the spinohypothalamic tract (SHT), a relatively high percentage of low-threshold (LT) neurons were also found (20%). Responses to thermal stimuli were found more commonly in WDR than in HT neurons: 75% of HT and 93% of WDR neurons responded to heat, while 16% of HT and 54% of WDR neurons responded to cold. These neurons responded primarily to noxious intensities of thermal stimulation. In contrast, all LT neurons responded to innocuous and noxious intensities of both heat and cold stimuli, a phenomenon that has not been described for other populations of mechanoreceptive LT neurons at spinal or trigeminal levels. In contrast to THT neurons, RHT neurons exhibited large and complex receptive fields, which extended over both orofacial (“trigeminal”) and extracephalic (“non-trigeminal”) skin areas. Their responses to stimulation of trigeminal receptive fields were greater than their responses to stimulation of non-trigeminal receptive fields, and their responses to innocuous stimuli were induced only when applied to trigeminal receptive fields. As described for SHT axons, the axons of THT and RHT neurons ascended through the contralateral brain stem to the supraoptic decussation (SOD) in the lateral hypothalamus; 57% of them then crossed the midline to reach the ipsilateral hypothalamus. Collateral projections were found in the superior colliculus, substantia nigra, red nucleus, anterior pretectal nucleus, and in the lateral, perifornical, dorsomedial, suprachiasmatic, and supraoptic hypothalamic nuclei. Additional projections (which have not been described previously for SHT neurons) were found rostral to the hypothalamus in the caudate-putamen, globus pallidus, and substantia innominata. The findings that nonnociceptive signals reach the hypothalamus primarily through the direct THT route, whereas nociceptive signals reach the hypothalamus through both the direct THT and the indirect RHT routes suggest that highly prioritized painful signals are transferred in parallel channels to ensure that this critical information reaches the hypothalamus, a brain area that regulates homeostasis and other humoral responses required for the survival of the organism.


1994 ◽  
Vol 71 (3) ◽  
pp. 959-980 ◽  
Author(s):  
R. J. Dado ◽  
J. T. Katter ◽  
G. J. Giesler

1. Seventy-seven neurons in the cervical enlargement of rats anesthetized with urethan were initially antidromically activated using currents < or = 30 microA from the contralateral posterior thalamus. A goal of these experiments was to determine the course of physiologically characterized spinal axons within the diencephalon. Therefore, in 38 cases, additional antidromic mapping was done throughout the mediolateral extent of the diencephalon at multiple anterior-posterior planes. 2. Electrolytic lesions marking the recording sites were recovered for 71 neurons. Thirty-one were located in the superficial dorsal horn (SDH); 39 were in nucleus proprius or the lateral reticulated area of the deep dorsal horn (DDH), and one was in the ventral horn. 3. Eight of 38 (21%) neurons that were tested for more anterior projections could only be antidromically activated with currents < or = 30 microA from sites in the contralateral posterior thalamus. Such neurons are referred to as spinothalamic tract (STT) neurons. Lesions marking the lowest threshold points for antidromic activation were located in or near the posterior thalamic group (Po). At more anterior levels, considerably higher currents were required for antidromic activation or it was not possible to activate the neurons with currents up to 500 microA. Four of these neurons were physiologically characterized and each responded preferentially to noxious mechanical stimuli (wide dynamic range, WDR). Each of the three neurons that were tested responded to noxious heat stimuli. These findings confirm anatomic studies that have shown that a number of STT axons terminate in Po and suggest that such axons that originate in the cervical enlargement carry nociceptive input from the upper extremity. 4. In 15 cases, electrode penetrations were made systematically throughout much of the contralateral ventrobasal complex (VbC). In 17 cases, penetrations were made throughout the intralaminar nuclei contralaterally, including the central lateral nucleus (CL). Surprisingly, only one of the examined axons was antidromically activated with low currents from CL and one from VbC, although both of these nuclei are known to receive sizeable inputs from the STT. 5. Many of the axons (27 of the 38 tested, 71%) that were initially antidromically activated from the contralateral posterior thalamus could also be antidromically activated with low currents (< or = 30 microA) and at increased latencies from sites located anteriorly in the contralateral hypothalamus. Such neurons are referred to as spinothalamic tract/spinohypothalamic tract (STT/SHT) neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 81 (3) ◽  
pp. 1095-1103 ◽  
Author(s):  
Qing Lin ◽  
Jing Wu ◽  
Yuan Bo Peng ◽  
Minglei Cui ◽  
William D. Willis

Inhibition of primate spinothalamic tract neurons by spinal glycine and GABA is modulated by guanosine 3′,5′-cyclic monophosphate. Our recent work has suggested that the nitric oxide/guanosine 3′,5′-cyclic monophosphate (NO/cGMP) signal transduction system contributes to central sensitization of spinothalamic tract (STT) neurons in part by influencing the descending inhibition of nociception resulting from stimulation in the periaqueductal gray. This study was designed to examine further whether activation of the NO/cGMP cascade reduces the inhibition of the activity of STT neurons mediated by spinal inhibitory amino acid (IAA) receptors. Responses of STT cells to noxious cutaneous stimuli were inhibited by iontophoresis of glycine and GABA agonists in anesthetized monkeys. Administration of 8-bromoguanosine-3′,5′-cyclophosphate sodium (8-bromo-cGMP), a membrane permeable analogue of cGMP, either by microdialysis or by iontophoresis reduced significantly the IAA-induced inhibition of wide dynamic range (WDR) STT cells in the deep layers of the dorsal horn. The reduction in inhibition lasted for up to 1–1.5 h after the cessation of drug infusion. In contrast, IAA-induced inhibition of WDR STT cells in the superficial dorsal horn and high-threshold (HT) cells in superficial or deep layers was not significantly changed during 8-bromo-cGMP infusion. Iontophoresis of 8-bromo-cGMP onto STT cells produced the same actions as produced by microdialysis of this agent, but the effect was not as long-lasting nor as potent. Finally, an attenuation of the IAA receptor–mediated inhibition of STT cells produced by iontophoretic release of a NO donor, 3-morpholinosydnonimine, could be blocked by pretreatment of the spinal cord with a guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. These results suggest that an increased spinal cGMP level contributes to the sensitization of WDR STT neurons in the deep dorsal horn in part by down-regulating spinal IAA receptors. However, no evidence is provided in this study that the NO/cGMP cascade regulates IAA receptors on HT and superficial WDR neurons. Combined with the preceding studies, our data support the view that NO and cGMP function in the same signal transduction cascade and play an important role in central sensitization.


Sign in / Sign up

Export Citation Format

Share Document