scholarly journals Peltier Effect Applied to the Design and Realization of a New Mass Flow Sensor

2000 ◽  
Vol 22 (3) ◽  
pp. 165-174
Author(s):  
M. Rahmoun ◽  
A. El Hassani ◽  
D. Leclerq ◽  
E. Bendada

The present paper deals with design and realization of a new mass flow sensor using the Peltier effect. The sensor, shaped as a bimetallic circuit includes two continuous parallel strips coated with a great deal of metal plated spots. In such a device, one track performs as a classical thermoelectrical circuitry whose both plated and uncoated parts provide the thermopile junctions. The other strip is subjected to electrical current so as to generate numerous small thermal gradients owing to the Peltier effect. Then, the resulting differences in temperature induce a Seebeck e.m.f. detected by the other strip acting as a receiver. The thermal coupling between transmitter and receiver tracks depends on many variation of the surrounding environment heat transfer coefficient. Therefore, such a device allows us to detect any shift in physical properties related to the apparent thermal conductivity. In special case of a steady state fluid, the induced e.m.f. in the receiving track hinges on the thermal conductivity. When the fluid is in relative motion along the sensor, the velocity can be read out as a funotion of voltage as an application, the sensor is placed into a tube conducting a fluid flow, in order to design a new mass flowmeter.

Author(s):  
Lohrberg Carolin ◽  
Lenz Christian ◽  
Kreher Lisa ◽  
Bechtold Franz ◽  
Carstens Stefan ◽  
...  

2020 ◽  
pp. 1-1
Author(s):  
Thomas V.P. Schut ◽  
Remco J. Wiegerink ◽  
Joost C. Lotters

Author(s):  
Y. Zeng ◽  
J. Groenesteijn ◽  
D. Alveringh ◽  
R.J.A. Steenwelle ◽  
K. Ma ◽  
...  

Author(s):  
Jarno Groenesteijn ◽  
Harmen Droogendijk ◽  
Remco J. Wiegerink ◽  
Theo S. J. Lammerink ◽  
Joost C. Lotters ◽  
...  

Author(s):  
Il Doh ◽  
Il-Bum Kwon ◽  
Jiho Chang ◽  
Sejong Chun

Abstract A surface flow sensor is needed if turbulent drag force is to be measured over a vehicle, such as a car, a ship, and an airplane. In case of automobile industry, there are no automobile manufacturers which measure surface flow velocity over a car for wind tunnel testing. Instead, they rely on particle image velocimetry (PIV), pressure sensitive paint (PSP), laser Doppler anemometry (LDA), pitot tubes, and tufts to get information regarding the turbulent drag force. Surface flow sensors have not devised yet. This study aims at developing a surface flow sensor for measuring turbulent drag force over a rigid body in a wind tunnel. Two sensing schemes were designed for the fiber-optic distributed sensor and the thermal mass flow sensor. These concepts are introduced in this paper. As the first attempt, a thermal mass flow sensor has been fabricated. It was flush-mounted on the surface of a test section in the wind tunnel to measure the surface flow velocity. The thermal mass flow sensor was operated by either constant current or constant resistance modes. Resistance ratio was changed as the electric current was increased by the constant current mode, while power ratio was saturated as the resistance was increased by the constant resistance mode. Either the resistance ratio or the power ratio was changed with the flow velocity measured by a Pitot tube, located at the center of test section.


Sign in / Sign up

Export Citation Format

Share Document