scholarly journals Recent Advances in Organic Solar Cells

2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Thomas Kietzke

Solar cells based on organic semiconductors have attracted much attention. The thickness of the active layer of organic solar cells is typically only 100 nm thin, which is about 1000 times thinner than for crystalline silicon solar cells and still 10 times thinner than for current inorganic thin film cells. The low material consumption per area and the easy processing of organic semiconductors offer a huge potential for low cost large area solar cells. However, to compete with inorganic solar cells the efficiency of organic solar cells has to be improved by a factor of 2-3. Several organic semiconducting materials have been investigated so far, but the optimum material still has to be designed. Similar as for organic light emitting devices (OLED) small molecules are competing with polymers to become the material of choice. After a general introduction into the device structures and operational principles of organic solar cells the three different basic types (all polymer based, all small molecules based and small molecules mixed with polymers) are described in detail in this review. For each kind the current state of research is described and the best of class reported efficiencies are listed.

2006 ◽  
Vol 90 (20) ◽  
pp. 3557-3567 ◽  
Author(s):  
U. Gangopadhyay ◽  
K.H. Kim ◽  
S.K. Dhungel ◽  
U. Manna ◽  
P.K. Basu ◽  
...  

2005 ◽  
Vol 20 (9) ◽  
pp. 938-946 ◽  
Author(s):  
U Gangopadhyay ◽  
S K Dhungel ◽  
K Kim ◽  
U Manna ◽  
P K Basu ◽  
...  

Author(s):  
Dorota Zając ◽  
Dariusz Przybylski ◽  
Jadwiga Sołoducho

AbstractDeveloping effective and low‐cost organic semiconductors is an opportunity for the development of organic solar cells (OPV). Herein, we report the molecular design, synthesis and characterization of two molecules with D–A–D–A configuration: 2-cyano-3-(5-(8-(3,4-ethylenodioxythiophen-5-yl)-2,3-diphenylquinoxalin-5-yl)thiophen-2-yl)acrylic acid (6) and 2-cyano-3-(5-(2,3-diphenyl-8-(thiophen-2-yl)quinoxalin-5-yl)thiophen-2-yl)acrylic acid (7). Moreover, we investigated the structural, theoretical and optical properties. The distribution of HOMO/LUMO orbitals and the values of the ionization potential indicate good semiconducting properties of the compounds and that they can be a bipolar material. Also, the optical study show good absorption in visible light (λabs 380–550 nm). We investigate the theoretical optoelectronic properties of obtained compounds as potential materials for solar cells.


2005 ◽  
Vol 20 (12) ◽  
pp. 3167-3179 ◽  
Author(s):  
Sophie E. Gledhill ◽  
Brian Scott ◽  
Brian A. Gregg

Organic photovoltaic devices are poised to fill the low-cost, low power niche in the solar cell market. Recently measured efficiencies of solid-state organic cells are nudging 5% while Grätzel’s more established dye-sensitized solar cell technology is more than double this. A fundamental understanding of the excitonic nature of organic materials is an essential backbone for device engineering. Bound electron-hole pairs, “excitons,” are formed in organic semiconductors on photo-absorption. In the organic solar cell, the exciton must diffuse to the donor–accepter interface for simultaneous charge generation and separation. This interface is critical as the concentration of charge carriers is high and recombination here is higher than in the bulk. Nanostructured engineering of the interface has been utilized to maximize organic materials properties, namely to compensate the poor exciton diffusion lengths and lower mobilities. Excitonic solar cells have different limitations on their open-circuit photo-voltages due to these high interfacial charge carrier concentrations, and their behavior cannot be interpreted as if they were conventional solar cells. This article briefly reviews some of the differences between excitonic organic solar cells and conventional inorganic solar cells and highlights some of the technical strategies used in this rapidly progressing field, whose ultimate aim is for organic solar cells to be a commercial reality.


2007 ◽  
Vol 91 (20) ◽  
pp. 1943-1947 ◽  
Author(s):  
N. Marrero ◽  
B. González-Díaz ◽  
R. Guerrero-Lemus ◽  
D. Borchert ◽  
C. Hernández-Rodríguez

Sign in / Sign up

Export Citation Format

Share Document