scholarly journals Synthesis and Theoretical Investigation Using DFT of 2,3-Diphenylquinoxaline Derivatives for Electronic and Photovoltaic Effects

Author(s):  
Dorota Zając ◽  
Dariusz Przybylski ◽  
Jadwiga Sołoducho

AbstractDeveloping effective and low‐cost organic semiconductors is an opportunity for the development of organic solar cells (OPV). Herein, we report the molecular design, synthesis and characterization of two molecules with D–A–D–A configuration: 2-cyano-3-(5-(8-(3,4-ethylenodioxythiophen-5-yl)-2,3-diphenylquinoxalin-5-yl)thiophen-2-yl)acrylic acid (6) and 2-cyano-3-(5-(2,3-diphenyl-8-(thiophen-2-yl)quinoxalin-5-yl)thiophen-2-yl)acrylic acid (7). Moreover, we investigated the structural, theoretical and optical properties. The distribution of HOMO/LUMO orbitals and the values of the ionization potential indicate good semiconducting properties of the compounds and that they can be a bipolar material. Also, the optical study show good absorption in visible light (λabs 380–550 nm). We investigate the theoretical optoelectronic properties of obtained compounds as potential materials for solar cells.

2021 ◽  
Author(s):  
Junzhen Ren ◽  
Pengqing Bi ◽  
Jianqi Zhang ◽  
Jiao Liu ◽  
Jingwen Wang ◽  
...  

Abstract Developing photovoltaic materials with simple chemical structures and easy synthesis still remains a major challenge in the industrialization process of organic solar cells (OSCs). Herein, an ester substituted poly(thiophene vinylene) derivative, PTVT-T, was designed and synthesized in very few steps by adopting commercially available raw materials. The ester groups on the thiophene units enable PTVT-T to have a planar and stable conformation. Moreover, PTVT-T presents a wide absorption band and strong aggregation effect in solution, which are the key characteristics needed to realize high performance in non-fullerene-acceptor (NFA)-based OSCs. We then prepared OSCs by blending PTVT-T with three representative fullerene- and NF-based acceptors, PC71BM, IT-4F and BTP-eC9. It was found that PTVT-T can work well with all the acceptors, showing great potential to match new emerging NFAs. Particularly, a remarkable power conversion efficiency of 16.20% is achieved in a PTVT-T:BTP-eC9-based device, which is the highest value among the counterparts based on PTV derivatives. This work demonstrates that PTVT-T shows great potential for the future commercialization of OSCs.


2015 ◽  
Vol 1784 ◽  
Author(s):  
Venkata Neti

ABSTRACTA series of fluorine appended highly conjugated fullerenes were prepared containing fluoro-α-cyanostilbene and aryl ester units. These modified PCBM dyads are fully characterized by NMR, Mass spectrometry, UV-vis, and cyclic voltammetry (Figures 1-4). It was found that the presence of fluoro-α-cyanostilbenes and esters affects the cyclic voltammetry and absorption in the UV-Vis region. The PCBA modified fullerenes significantly influences the HOMO-LUMO energy and wide absorption compared to PCBM.


2005 ◽  
Vol 20 (12) ◽  
pp. 3167-3179 ◽  
Author(s):  
Sophie E. Gledhill ◽  
Brian Scott ◽  
Brian A. Gregg

Organic photovoltaic devices are poised to fill the low-cost, low power niche in the solar cell market. Recently measured efficiencies of solid-state organic cells are nudging 5% while Grätzel’s more established dye-sensitized solar cell technology is more than double this. A fundamental understanding of the excitonic nature of organic materials is an essential backbone for device engineering. Bound electron-hole pairs, “excitons,” are formed in organic semiconductors on photo-absorption. In the organic solar cell, the exciton must diffuse to the donor–accepter interface for simultaneous charge generation and separation. This interface is critical as the concentration of charge carriers is high and recombination here is higher than in the bulk. Nanostructured engineering of the interface has been utilized to maximize organic materials properties, namely to compensate the poor exciton diffusion lengths and lower mobilities. Excitonic solar cells have different limitations on their open-circuit photo-voltages due to these high interfacial charge carrier concentrations, and their behavior cannot be interpreted as if they were conventional solar cells. This article briefly reviews some of the differences between excitonic organic solar cells and conventional inorganic solar cells and highlights some of the technical strategies used in this rapidly progressing field, whose ultimate aim is for organic solar cells to be a commercial reality.


2019 ◽  
Vol 01 (02) ◽  
pp. 119-124
Author(s):  
Touhami GHAITAOUI ◽  
Slimane LARIBI ◽  
Fatima Zohra ARAMA ◽  
ALI Benatiallah ◽  
◽  
...  

The various energy constraints dictated by a series of global economic and environmental social factors require the international scientific community to find viable alternatives to conventional energy sources. Renewable energies such as photovoltaics is among the most coveted and developed energy sources worldwide. Technology of inorganic semiconductor-based silicon and other developed considerably and responds more to the desired energy goals Technology of inorganic semiconductor is very expensive and requires considerable resources making it limited to the most powerful country in the world The technology of organic semiconductor is much easier and more accessible which promises a very bright. It can be considered as a real alternative for countries with limited resources for the widespread use of solar energy. This research is in the field of preparation and characterization of organic solar cells based on semiconducting polymers. After having carried out a scientific statement on the technology of organic semiconductors have been able to achieve in collaboration with the Department of Industrial Chemistry a multilayer organic cell where the polymer is polyaniline. The disadvantage of this type of solar cells is its low efficiency. The cell we have developed to present a comparison of the performance the literature. This technology must be improved to increase its performance may not be on inorganic cells but enough to meet domestic needs.


2019 ◽  
Vol 39 (7) ◽  
pp. 636-641 ◽  
Author(s):  
Ismail Borazan ◽  
Yasin Altin ◽  
Ali Demir ◽  
Ayse Celik Bedeloglu

Abstract Polymer-based organic solar cells are of great interest as they can be produced with low-cost techniques and also have many interesting features such as flexibility, graded transparency, easy integration, and lightness. However, conventional wide bandgap polymers used for the light-absorbing layer significantly affect the power conversion efficiency of organic solar cells because they collect sunlight in a given spectrum range and due to their limited stability. Therefore, in this study, polymers with different bandgaps were used, which could allow for the production of more stable and efficient organic solar cells: P3HT as the wide bandgap polymer, and PTB7 and PCDTBT as low bandgap polymers. These polymers with different bandgaps were combined with PCBM to obtain increased efficiency and optimum photoactive layer in the organic solar cell. The obtained devices were characterized by measuring optical, photoelectrical, and morphological properties. Solar cells using the PTB7 and PCDTBT polymers had more rough surfaces than the reference cell using P3HT. The use of low-bandgap polymers improved Isc significantly, and when combined with P3HT, a higher Voc was obtained.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Thomas Kietzke

Solar cells based on organic semiconductors have attracted much attention. The thickness of the active layer of organic solar cells is typically only 100 nm thin, which is about 1000 times thinner than for crystalline silicon solar cells and still 10 times thinner than for current inorganic thin film cells. The low material consumption per area and the easy processing of organic semiconductors offer a huge potential for low cost large area solar cells. However, to compete with inorganic solar cells the efficiency of organic solar cells has to be improved by a factor of 2-3. Several organic semiconducting materials have been investigated so far, but the optimum material still has to be designed. Similar as for organic light emitting devices (OLED) small molecules are competing with polymers to become the material of choice. After a general introduction into the device structures and operational principles of organic solar cells the three different basic types (all polymer based, all small molecules based and small molecules mixed with polymers) are described in detail in this review. For each kind the current state of research is described and the best of class reported efficiencies are listed.


2015 ◽  
Vol 3 (34) ◽  
pp. 8904-8915 ◽  
Author(s):  
Arthur D. Hendsbee ◽  
Seth M. McAfee ◽  
Jon-Paul Sun ◽  
Theresa M. McCormick ◽  
Ian G. Hill ◽  
...  

The design, synthesis, and characterization of seven phthalimide-based organic π-conjugated small molecules are reported.


Author(s):  
Ganesh D Sharma ◽  
Kanupriya Khandelwal ◽  
Amaresh Mishra ◽  
Subhayan Biswas

Organic solar cells (OSC) have drawn tremendous interest because of their potential for low-cost solution processing and color tunability. OSCs with bulk-heterojunction structures offer an attractive pathway to efficiently utilize...


2019 ◽  
Vol 16 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Hui Zhang ◽  
Yibing Ma ◽  
Youyi Sun ◽  
Jialei Liu ◽  
Yaqing Liu ◽  
...  

In this review, small-molecule donors for application in organic solar cells reported in the last three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed for explaining the relationship between structure and power conversion efficiency. These results and discussions draw some rules for rational donor molecular design, which is very important for further improving the power conversion efficiency of organic solar cells based on the small-molecule donor.


Sign in / Sign up

Export Citation Format

Share Document