scholarly journals Determination of Pantoprazole Sodium and Lansoprazole in Individual Tablet Dosage Forms by RP-HPLC Using Single Mobile Phase

2009 ◽  
Vol 6 (2) ◽  
pp. 489-494 ◽  
Author(s):  
B. Prasanna Kumar Reddy ◽  
Y. Ramanjaneya Reddy ◽  
D. Ramachandran

A simple, sensitive and precise high performance liquid chromatographic method for the analysis of pantoprazole sodium and lansoprazole has been developed, validated and used for the determination of compounds in commercial pharmaceutical products. The compounds were well separated an isocratically on a C18column [Inertsil C18, 5μ, 150 mm x 4.6 mm] utilizing a mobile phase consisting of acetonitrile: phosphate buffer (60:40, v/v, pH 7.0) at a flow rate of 1.0 mL/min with UV detection at 230 nm. The retention time of pantoprazole sodium and lansoprazole was found to be 2.017 min and 2.538. The procedure was validated for linearity (Correlation coefficient=0.999). The study showed that reversed-phase liquid chromatography is sensitive and selective for the determination of pantoprazole sodium and lansoprazole using single mobile phase.

2017 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Milena Cristina Ribeiro Souza Magalhães ◽  
Alisson Samuel Portes Caldeira ◽  
Hanna De Sousa Rocha Almeida ◽  
Sílvia Ligório Fialho ◽  
Armando Da Silva Cunha Junior

A reversed-phase high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of encapsulation efficiency of zidovudine in nanoparticules. The method was carried out in isocratic mode using 0.040M sodium acetate: methanol: acetonitrile: glacial acetic acid (880:100:20:2) as mobile phase, a C8 column at 25ºC and UV detection at 240 nm. The method was linear (r2 ˃ 0.99) over the range of 25.0-150.0 μg/mL, precise (RSD ˂ 5%), accurate (recovery = 100.5%), robust and selective. The validated HPLC-UV method can be successfully applied to determine the rate of zidovudine in nanoparticules.


Author(s):  
Babu C ◽  
Narasimha Rao Kl ◽  
Devanna N ◽  
Suresh Reddy Kvn

  Objective: The objective of this method is to develop a stability-indicating reversed phase high performance liquid chromatographic method for the quantification of related substances in the drug substance and tablet dosage form of Fampridine.Methods: Inertsil ODS 3V, (150 mm × 4.6 mm, 5 μm particle size) column was used for the separation of analytes. Mobile phase A was prepared by dissolving 6.8 g of potassium dihydrogen orthophosphate (0.05 mol) and 1 g of 1-octane sulfonic acid into a 1000 ml of water, pH was adjusted to 4.0±0.05 with diluted orthophosphoric acid. Mobile phase B was prepared by mixing the above phosphate buffer (pH 4.0) and acetonitrile in 20:80 (% v/v). Gradient mode was used with the flow rate of 1.0 ml/minutes, and the peaks were monitored at 260 nm.Results: Linearity results showed that the correlation coefficient (r2) is >0.995 for individual active drug substances as well as their related substances in the range of limit of quantification to 150% of the specification concentration (0.5% with respect to sample concentration of 0.4 mg/ml). Accuracy of the method was established with their recovery values in the range of 98.5-104.5% with the % RSD not more than 1.7%. The method was proved by highly precise (% RSD of intra-day and inter-day study was not more than 4.3%) and more robust.Conclusion: Present method is able to separate two related compounds with each other and with the main drug substance with the resolution more than 2.0. The test standard solution and test solution were found to be stable in diluent up to 24 hrs. The mass balance of forced degradation of formulations is close to 99% made this method as a stability indicating method.


Author(s):  
CAROLINE GRACE A ◽  
PRABHA T ◽  
SIVAKUMAR T

Objective: The aim of the present work is the development of new, sensitive, specific, and accurate high-performance liquid chromatographic method for the separation and determination of dapagliflozin and its impurities in tablet dosage form. Methods: The chromatographic separation of drug and its impurities was achieved using Hypersil BDS C18 column (250 mm × 4.6 mm, 5 μ) with mobile phase consisted of mobile phase-A (Buffer pH 6.5) and mobile phase-B (acetonitrile:water 90:10) by gradient program at a flow rate of 1 mL/min with ultraviolet detection at 245 nm. Results: Dapagliflozin and its impurities A, B, C, D, E, and impurity-F were successfully eluted at the retention time of 16.95, 2.72, 7.82, 10.58, 21.11, 30.37, and 34.36 min, respectively, with good resolution. The method was validated according to the international conference on harmonization guidelines. The validation results showed good precision, accuracy, linearity, specificity, sensitivity, and robustness. Conclusion: Successful separation and determination of dapagliflozin and its six impurities were achieved by the proposed method. The developed method can be applied for the routine analysis of dapagliflozin and its impurities in pharmaceutical formulations.


2010 ◽  
Vol 7 (3) ◽  
pp. 827-832 ◽  
Author(s):  
R. Kalaichelvi ◽  
B. Thangabalan ◽  
D. Srinivasa Rao

A rapid, simple and validated reversed-phase high-performance liquid chromatographic method has been developed for analysis of aripiprazole in tablet dosage form. Aripiprazole was separated on an ODS analytical column with a 40:60 (v/v) mixture of acetonitrile and triethanolamine buffer (5 mM, pH 3.5 ± 0.05 adjusted by addition of 85% phosphoric acid) as mobile phase at a flow rate of 1.5 mL min-1. The effluent was monitored by UV detection at 254 nm. Calibration plots were linear in the range of 20 to 60 µg mL-1and the LOD and LOQ were 0.411 and 1.248 µg mL-1, respectively. The high recovery and low relative standard deviation confirm the suitability of the method for routine quality control determination of aripiprazole in tablets.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (07) ◽  
pp. 43-49
Author(s):  
B.P. Manjula ◽  
V. G Joshi ◽  
Siddamsetty Ramachandra Setty ◽  
M Geetha ◽  

Tea tree oil, an active ingredient of skin, hair and nail care cosmeceuticals, has claims for topical antimicrobial, analgesic and anti-inflammatory activity. Its complex composition is governed by ISO 4730:2017. Terpinene-4-ol is the principal constituent of the oil (35% - 48%) followed by γ-terpinene (14% -28%), α-terpinene (6%-12%) and 1,8-cineole (≤15%). A reversed-phase, isocratic high performance liquid chromatographic method has been developed and validated for routine determination of tea tree oil based on1,8-cineole content in bulk and commercially available cosmeceuticals using C18 column, methanol-water (70:30 v/v) as mobile phase and flow rate of 1mL/min. UV detection was done at 200 nm. Linearity of the method was established for 20-100μL/mL (R2 = 0.9992) with LOD, LOQ values of 0.5594 μL/mL and 5.5941μL/mL respectively. The % RSD values for robustness and precision were <1% and recovery ranged between 99.09-102.96%. The method was successfully applied for determination of 1,8-cineole content in cosmeceuticals.


1988 ◽  
Vol 34 (1) ◽  
pp. 87-90 ◽  
Author(s):  
K Abe ◽  
R Konaka

Abstract We describe a "high-performance" liquid-chromatographic method for determining 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) in human urine. MHPG is separated on a reversed-phase column with isocratic elution, oxidized with sodium metaperiodate, and its absorbance measured at 365 nm. This method shows higher specificity, less interference for MHPG than methods involving electrochemical or fluorescence detection. Post-column derivatization of MHPG with periodate yields vanillin. The detection limit (twice the signal-to-noise ratio) in urine samples was 0.08 mg/L. Mean analytical recovery was 72%. Within-assay and day-to-day CVs were 2.9% and 6.5%, respectively. Reference intervals for MHPG in 24-h urine from apparently healthy subjects were 0.85-3.24 mg/day for men and 0.63-2.20 mg/day for women. In terms of creatinine excretion, the respective reference intervals were 0.55-1.99 and 0.70-1.96 mg per gram of creatinine.


2013 ◽  
Vol 9 (2) ◽  
pp. 26-29 ◽  
Author(s):  
AK Hemanth Kumar ◽  
V Sudha ◽  
Geetha Ramachandran

A high performance liquid chromatographic method for determination of rifabutin in human plasma was  developed. The method involved deproteinisation of the sample with acetonitrile and analysis of the  supernatant using a reversed-phase C18 column (250mm) and UV detection at a wavelength of 265nm.  The assay was specific for rifabutin and linear from 0.025 to 10.0μg/ml. The relative standard deviation  of intra- and inter-day assays was lower than 10%. The method was able to remove interfering materials  in plasma, yielding an average recovery of rifabutin from plasma of 101%. Due to its simplicity, the assay  can be used for pharmacokinetic studies of rifabutin. SAARC Journal of Tuberculosis, Lung Diseases & HIV/AIDS; 2012; IX(2) 26-29 DOI: http://dx.doi.org/10.3126/saarctb.v9i2.7975


Sign in / Sign up

Export Citation Format

Share Document