scholarly journals Systems Design, Fabrication, and Testing of a High-Speed Miniature Motor for Cryogenic Cooler

2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Dipjyoti Acharya ◽  
Lei Zhou ◽  
Liping Zheng ◽  
Thomas X. Wu ◽  
Jay Kapat ◽  
...  

The long-term storage of liquid hydrogen for space missions is of considerable interest to NASA. To this end, the Reverse Turbo-Brayton Cryocooler (RTBC) is considerably lighter than conventional designs and a potentially viable and attractive solution for NASA's long-term Zero-Boil-off (ZBO) hydrogen storage system for future space missions. We present the systems design, fabrication, and performance evaluation of the Permanent Magnet Synchronous Motor (PMSM) powering a cryocooler capable of removing 20 W of heat at 18 K with a COP of 0.005 and driven by two 2-kW permanent magnet synchronous motors operating at 200 000 rpm and at room temperature and 77 K. Structural, thermal, and rotordynamic aspects of system design are considered.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3622
Author(s):  
Wen Ji ◽  
Fei Ni ◽  
Dinggang Gao ◽  
Shihui Luo ◽  
Qichao Lv ◽  
...  

The motor is an important part of the flywheel energy storage system. The flywheel energy storage system realizes the absorption and release of electric energy through the motor, and the high-performance, low-loss, high-power, high-speed motors are key components to improve the energy conversion efficiency of energy storage flywheels. This paper analyzes the operating characteristics of the permanent magnet synchronous motor/generator (PMSG) used in the magnetically levitated flywheel energy storage system (FESS) and calculates the loss characteristics in the drive and power generation modes. Based on this, the electromagnetic part of the motor is optimized in detail. Aiming at this design, this paper calculates the loss characteristics of driving and power generation modes in detail, including its winding loss, core loss, rotor eddy current loss and mechanical loss. The calculation results show that the design meets the loss requirements. It can reduce the no-load loss of the permanent magnet synchronous motor at high speed and improve the energy conversion efficiency, which gives this system practical application prospects.


2012 ◽  
Vol 220-223 ◽  
pp. 1040-1043
Author(s):  
Hong Cui ◽  
You Qing Gao

High-speed permanent magnet synchronous motor (PMSM) is more and more widely applied in high precision processing and high-performance machines. It is very important to research practical control strategy for the stability operation of the high-speed PMSM. The strategy of sensorless grey prediction fuzzy direct torque control (DTC) is proposed which is suitable for high-speed PMSM control system. The method of prediction fuzzy control based on DTC is used to gain the flux, torque and flux oriented angle through the prediction model of the motor parameters. The best control scheme is gained by fuzzy reasoning to overcome the lag on the system making the adjustment process stable and realizing accurate predictive control. Thereby, the dynamic response of the system, anti-disturbance capability and control accuracy can be improved.


Sign in / Sign up

Export Citation Format

Share Document