scholarly journals Effect of Different Support Morphologies and Pt Particle Sizes in Electrocatalysts for Fuel Cell Applications

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
G. Sevjidsuren ◽  
S. Zils ◽  
S. Kaserer ◽  
A. Wolz ◽  
F. Ettingshausen ◽  
...  

The performance of a low temperature fuel cell is strongly correlated with parameters like the platinum particle size, platinum dispersion on the carbon support, and electronic and protonic conductivity in the catalyst layer as well as its porosity. These parameters can be controlled by a rational choice of the appropriate catalyst synthesis and carbon support. Only recently, particular attention has been given to the support morphology, as it plays an important role for the formation of the electrode structure. Due to their significantly different structure, mesoporous carbon microbeads (MCMBs) and multiwalled carbon nanotubes (MWCNTs) were used as supports and compared. Pt nanoparticles were decorated on these supports using the polyol method. Their size was varied by different heating times during the synthesis, and XRD, TEM, SEM, CV, and single cell tests used in their detailed characterization. A membrane-electrode assembly prepared with the MCMB did not show any activity in the fuel cell test, although the catalyst's electrochemical activity was almost similar to the MWCNT. This is assumed to be due to the very dense electrode structure formed by this support material, which does not allow for sufficient mass transport.

2009 ◽  
Vol 60-61 ◽  
pp. 339-342
Author(s):  
Chun Guang Suo ◽  
Xiao Wei Liu ◽  
Xi Lian Wang

Membrane electrode assembly (MEA) is the key component of direct methanol fuel cell (DMFC), the structure and its preparation methods may bring great effects on the cell performances. Due to the requirement of the high performance of the MEA for the micro direct methanol fuel cell (DMFC), we provide a novel double-catalyst layer MEA using CCM-GDE (Catalyst Coated Membrane,CCM;Gas Diffusion Electrode,GDE) fabrication method. The double-catalyst layer is formed with an inner catalyst layer (in anode side: PtRu black as catalyst, in cathode side: Pt black as catalyst) and an outer catalyst layer (in anode side: PtRu/C as catalyst, in cathode side: Pt/C as catalyst). The fabrication procedures are important to the new structured MEA, thus three kinds of fabrication methods are studied, including CCM-GDE, GDE-Membrane and CCM-GDL methods. It was found that the CCM-GDE technology may enhance the contact properties between the catalyst and PEM, and increase the electrode reaction areas, resulted in increasing the performance of the DMFC.


2013 ◽  
Vol 652-654 ◽  
pp. 819-822 ◽  
Author(s):  
Chun Guang Suo ◽  
Wen Bin Zhang ◽  
Hua Wang ◽  
Guang Min Wu

A direct methanol fuel cell (DMFC) with a novel double-layer structured membrane electrode assembly (MEA) was developed and a better performance was obtained. The double catalytic layer anode is composed of a hydrophilic inner catalyst layer with PtRu black and an outer catalyst layer with PtRu/C. In the double-layer structured anode, there existed a catalyst concentration gradient and porosity gradient, resulting in good mass transfer, proton and electron conducting. Furthermore, the delamination of the catalyst layer from the membrane was also resolved because of the inner hydrophilic catalyst film. To optimize the combination of the two catalysts layer a one-dimensional model based on Tafel type kinetics and semi-empirical mass transport coefficient was applied. The simulation of anode overpotential versus PtRu Blk inner layer thickness and PtRu/C outer layer thickness results showed a direct methanol fuel cell with a 5m thick inner PtRu black catalyst layer and an 8m thick outer 40wt%PtRu/C catalyst layer as anode electrode was the best.


2021 ◽  
Vol 12 (3) ◽  
pp. 148
Author(s):  
Qinwen Yang ◽  
Shujun Chen ◽  
Gang Xiao ◽  
Lexi Li

A collaborative design for the uneven distributions of a flow channel, gas diffusion layer porosity and catalyst layer porosity are newly proposed to improve the utilization ratio of the membrane electrode assembly of the proton exchange membrane fuel cell. The effects of the uneven design of the rib width and of the uneven porosity parameters of the cathode and anode gas diffusion layer and catalyst layer on the fuel cell performance were studied in detail. Numerical simulations were designed and implemented for validation. The results show that the fuel cell performance could be improved through the collaborative design of uneven distributions for different layers. The rib width gradually decreasing and the porosity of the cathode gas diffusion layer and the cathode catalyst layer gradually increasing along the fluid flow direction would contribute to a better design compared to the regular even design. The new uneven design can make the fuel penetrate into the catalyst layer in time to participate in the reaction, improve the utilization rate of the membrane electrode assembly, and greatly improve the performance of the fuel cell.


Sign in / Sign up

Export Citation Format

Share Document