scholarly journals Motion in Augmented Reality Games: An Engine for Creating Plausible Physical Interactions in Augmented Reality Games

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Brian Mac Namee ◽  
David Beaney ◽  
Qingqing Dong

The next generation of Augmented Reality (AR) games will require real and virtual objects to coexistin motionin immersive game environments. This will require the illusion that real and virtual objects interact physically together in a plausible way. TheMotion in Augmented Reality Games(MARG) engine described in this paper has been developed to allow these kinds of game environments. The paper describes the design and implementation of the MARG engine and presents two proof-of-concept AR games that have been developed using it. Evaluations of these games have been performed and are presented to show that the MARG engine takes an important step in developing the next generation of motion-rich AR games.

Author(s):  
Fabian Joeres ◽  
Tonia Mielke ◽  
Christian Hansen

Abstract Purpose Resection site repair during laparoscopic oncological surgery (e.g. laparoscopic partial nephrectomy) poses some unique challenges and opportunities for augmented reality (AR) navigation support. This work introduces an AR registration workflow that addresses the time pressure that is present during resection site repair. Methods We propose a two-step registration process: the AR content is registered as accurately as possible prior to the tumour resection (the primary registration). This accurate registration is used to apply artificial fiducials to the physical organ and the virtual model. After the resection, these fiducials can be used for rapid re-registration (the secondary registration). We tested this pipeline in a simulated-use study with $$N=18$$ N = 18 participants. We compared the registration accuracy and speed for our method and for landmark-based registration as a reference. Results Acquisition of and, thereby, registration with the artificial fiducials were significantly faster than the initial use of anatomical landmarks. Our method also had a trend to be more accurate in cases in which the primary registration was successful. The accuracy loss between the elaborate primary registration and the rapid secondary registration could be quantified with a mean target registration error increase of 2.35 mm. Conclusion This work introduces a registration pipeline for AR navigation support during laparoscopic resection site repair and provides a successful proof-of-concept evaluation thereof. Our results indicate that the concept is better suited than landmark-based registration during this phase, but further work is required to demonstrate clinical suitability and applicability.


2021 ◽  
pp. 2009602 ◽  
Author(s):  
Jae Joon Kim ◽  
Yan Wang ◽  
Haoyang Wang ◽  
Sunghoon Lee ◽  
Tomoyuki Yokota ◽  
...  

Author(s):  
Yulia Fatma ◽  
Armen Salim ◽  
Regiolina Hayami

Along with the development, the application can be used as a medium for learning. Augmented Reality is a technology that combines two-dimensional’s virtual objects and three-dimensional’s virtual objects into a real three-dimensional’s  then projecting the virtual objects in real time and simultaneously. The introduction of Solar System’s material, students are invited to get to know the planets which are directly encourage students to imagine circumtances in the Solar System. Explenational of planets form and how the planets make the revolution and rotation in books are considered less material’s explanation because its only display objects in 2D. In addition, students can not practice directly in preparing the layout of the planets in the Solar System. By applying Augmented Reality Technology, information’s learning delivery can be clarified, because in these applications are combined the real world and the virtual world. Not only display the material, the application also display images of planets in 3D animation’s objects with audio.


Author(s):  
Kevin Lesniak ◽  
Conrad S. Tucker

The method presented in this work reduces the frequency of virtual objects incorrectly occluding real-world objects in Augmented Reality (AR) applications. Current AR rendering methods cannot properly represent occlusion between real and virtual objects because the objects are not represented in a common coordinate system. These occlusion errors can lead users to have an incorrect perception of the environment around them when using an AR application, namely not knowing a real-world object is present due to a virtual object incorrectly occluding it and incorrect perception of depth or distance by the user due to incorrect occlusions. The authors of this paper present a method that brings both real-world and virtual objects into a common coordinate system so that distant virtual objects do not obscure nearby real-world objects in an AR application. This method captures and processes RGB-D data in real-time, allowing the method to be used in a variety of environments and scenarios. A case study shows the effectiveness and usability of the proposed method to correctly occlude real-world and virtual objects and provide a more realistic representation of the combined real and virtual environments in an AR application. The results of the case study show that the proposed method can detect at least 20 real-world objects with potential to be incorrectly occluded while processing and fixing occlusion errors at least 5 times per second.


Sign in / Sign up

Export Citation Format

Share Document