A proof-of-concept study on the impact of artificial hypergravity on force-adapted target sizing for direct Augmented Reality pointing

Author(s):  
Daniela Markov-Vetter ◽  
Vanja Zander ◽  
Joachim Latsch ◽  
Oliver Staadt
2021 ◽  
Vol 11 (8) ◽  
pp. 777
Author(s):  
Klaus Schlueter-Brust ◽  
Johann Henckel ◽  
Faidon Katinakis ◽  
Christoph Buken ◽  
Jörg Opt-Eynde ◽  
...  

The accuracy of the implant’s post-operative position and orientation in reverse shoulder arthroplasty is known to play a significant role in both clinical and functional outcomes. Whilst technologies such as navigation and robotics have demonstrated superior radiological outcomes in many fields of surgery, the impact of augmented reality (AR) assistance in the operating room is still unknown. Malposition of the glenoid component in shoulder arthroplasty is known to result in implant failure and early revision surgery. The use of AR has many promising advantages, including allowing the detailed study of patient-specific anatomy without the need for invasive procedures such as arthroscopy to interrogate the joint’s articular surface. In addition, this technology has the potential to assist surgeons intraoperatively in aiding the guidance of surgical tools. It offers the prospect of increased component placement accuracy, reduced surgical procedure time, and improved radiological and functional outcomes, without recourse to the use of large navigation or robotic instruments, with their associated high overhead costs. This feasibility study describes the surgical workflow from a standardised CT protocol, via 3D reconstruction, 3D planning, and use of a commercial AR headset, to AR-assisted k-wire placement. Post-operative outcome was measured using a high-resolution laser scanner on the patient-specific 3D printed bone. In this proof-of-concept study, the discrepancy between the planned and the achieved glenoid entry point and guide-wire orientation was approximately 3 mm with a mean angulation error of 5°.


2018 ◽  
Vol 55 ◽  
pp. 52-59 ◽  
Author(s):  
B.H. van Duren ◽  
K. Sugand ◽  
R. Wescott ◽  
R. Carrington ◽  
A. Hart

2019 ◽  
Vol 130 (5) ◽  
pp. 1173-1179
Author(s):  
Piotr Pietruski ◽  
Marcin Majak ◽  
Ewelina Świątek‐Najwer ◽  
Magdalena Żuk ◽  
Michał Popek ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Clive Beggs ◽  
Valentina Tavoni ◽  
Erica Menegatti ◽  
Mirko Tessari ◽  
Riccardo Ragazzi ◽  
...  

In this proof-of-concept study the impact of central venous pressure (CVP) on internal jugular veins cross-sectional area (CSA) and blood flow time-average velocity (TAV) was evaluated in eight subjects, with the aim of understanding the drivers of the jugular venous pulse. CVP was measured using a central venous catheter while CSA variation and TAV along a cardiac cycle were acquired using ultrasound. Analysis of CVP, CSA and TAV time-series signals revealed TAV and CSA to lag behind CVP by on average 0.129 s and 0.138 s, with an inverse correlation between CSA and TAV (r= –0.316). The respective autocorrelation signals were strongly correlated (mean r=0.729-0.764), with mean CSA periodicity being 1.062 Hz. Fourier analysis revealed the frequency spectrums of CVP, TAV and CSA signals to be dominated by frequencies at approximately 1 and 2 Hz, with those >1 Hz greatly attenuated in the CSA signal. Because the autocorrelograms and periodograms of the respective signals were aligned and dominated by the same underlying frequencies, this suggested that they are more easily interpreted in the frequency domain rather than the time domain.


2020 ◽  
Author(s):  
Hector Roux de Bézieux ◽  
James Bullard ◽  
Orville Kolterman ◽  
Michael Souza ◽  
Fanny Perraudeau

BACKGROUND Novel wearable biosensors, ubiquitous smartphone ownership, and telemedicine are converging to enable new paradigms of clinical research. A new generation of continuous glucose monitoring (CGM) devices provides access to clinical-grade measurement of interstitial glucose levels. Adoption of these sensors has become widespread for the management of type 1 diabetes and is accelerating in type 2 diabetes. In parallel, individuals are adopting health-related smartphone-based apps to monitor and manage care. OBJECTIVE We conducted a proof-of-concept study to investigate the potential of collecting robust, annotated, real-time clinical study measures of glucose levels without clinic visits. METHODS Self-administered meal-tolerance tests were conducted to assess the impact of a proprietary synbiotic medical food on glucose control in a 6-week, double-blind, placebo-controlled, 2×2 cross-over pilot study (n=6). The primary endpoint was incremental glucose measured using Abbott Freestyle Libre CGM devices associated with a smartphone app that provided a visual diet log. RESULTS All subjects completed the study and mastered CGM device usage. Over 40 days, 3000 data points on average per subject were collected across three sensors. No adverse events were recorded, and subjects reported general satisfaction with sensor management, the study product, and the smartphone app, with an average self-reported satisfaction score of 8.25/10. Despite a lack of sufficient power to achieve statistical significance, we demonstrated that we can detect meaningful changes in the postprandial glucose response in real-world settings, pointing to the merits of larger studies in the future. CONCLUSIONS We have shown that CGM devices can provide a comprehensive picture of glucose control without clinic visits. CGM device usage in conjunction with our custom smartphone app can lower the participation burden for subjects while reducing study costs, and allows for robust integration of multiple valuable data types with glucose levels remotely. CLINICALTRIAL ClinicalTrials.gov NCT04424888; http://clinicaltrials.gov/ct2/show/NCT04424888.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simon Hazubski ◽  
Harald Hoppe ◽  
Andreas Otte

Abstract In the field of neuroprosthetics, the current state-of-the-art method involves controlling the prosthesis with electromyography (EMG) or electrooculography/electroencephalography (EOG/EEG). However, these systems are both expensive and time consuming to calibrate, susceptible to interference, and require a lengthy learning phase by the patient. Therefore, it is an open challenge to design more robust systems that are suitable for everyday use and meet the needs of patients. In this paper, we present a new concept of complete visual control for a prosthesis, an exoskeleton or another end effector using augmented reality (AR) glasses presented for the first time in a proof-of-concept study. By using AR glasses equipped with a monocular camera, a marker attached to the prosthesis is tracked. Minimal relative movements of the head with respect to the prosthesis are registered by tracking and used for control. Two possible control mechanisms including visual feedback are presented and implemented for both a motorized hand orthosis and a motorized hand prosthesis. Since the grasping process is mainly controlled by vision, the proposed approach appears to be natural and intuitive.


2020 ◽  
Vol 14 ◽  
Author(s):  
Amaia Benitez-Andonegui ◽  
Rodion Burden ◽  
Richard Benning ◽  
Rico Möckel ◽  
Michael Lührs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document