scholarly journals Some Finite Sums Involving Generalized Fibonacci and Lucas Numbers

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
E. Kılıç ◽  
N. Ömür ◽  
Y. T. Ulutaş

By considering Melham's sums (Melham, 2004), we compute various more general nonalternating sums, alternating sums, and sums that alternate according to involving the generalized Fibonacci and Lucas numbers.

2011 ◽  
Vol 12 (1) ◽  
pp. 87 ◽  
Author(s):  
Emrah Kiliç ◽  
Neşe Ömür ◽  
Yücel Türker Ulutaş

2009 ◽  
Vol 42 (2) ◽  
Author(s):  
Zvonko Čerin

AbstractIn this paper we obtain explicit formulae for sums of products of a fixed number of consecutive generalized Fibonacci and Lucas numbers. These formulae are related to the recent work of Belbachir and Bencherif. We eliminate all restrictions about the initial values and the form of the recurrence relation. In fact, we consider six different groups of three sums that include alternating sums and sums in which terms are multiplied by binomial coefficients and by natural numbers. The proofs are direct and use the formula for the sum of the geometric series.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2002
Author(s):  
Necdet Batir ◽  
Anthony Sofo

We prove some finite sum identities involving reciprocals of the binomial and central binomial coefficients, as well as harmonic, Fibonacci and Lucas numbers, some of which recover previously known results, while the others are new.


2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.


1989 ◽  
Vol 03 (14) ◽  
pp. 1071-1085 ◽  
Author(s):  
L. A. BURSILL ◽  
GEORGE RYAN ◽  
XUDONG FAN ◽  
J. L. ROUSE ◽  
JULIN PENG ◽  
...  

Observations of the sunflower Helianthus tuberosus reveal the occurrence of both Fibonacci and Lucas numbers of visible spirals (parastichies). This species is multi-headed, allowing a quantitative study of the relative abundance of these two types of phyllotaxis. The florets follow a spiral arrangement. It is remarkable that the Lucas series occurred, almost invariably, in the first-flowering heads of individual plants. The occurrence of left-and right-handed chirality was found to be random, within experimental error, using an appropriate chirality convention. Quantitative crystallographic studies allow the average growth law to be derived (r = alτ−1; θ = 2πl/(τ + 1), where a is a constant, l is the seed cell number and τ is the golden mean [Formula: see text]). They also reveal departures from classical theoretical models of phyllotaxis, taking the form of persistent oscillations in both divergence angle and radius. The experimental results are discussed in terms of a new theoretical model for the close-packing of growing discs. Finally, a basis for synthesis of (inorganic) spiral lattice structures is proposed.


2016 ◽  
Vol 66 (3) ◽  
Author(s):  
Emrah Kiliç ◽  
Helmut Prodinger

AbstractWe give a systematic approach to compute certain sums of squares of Fibonomial coefficients with finite products of generalized Fibonacci and Lucas numbers as coefficients. The technique is to rewrite everything in terms of a variable


2020 ◽  
Vol 26 (3) ◽  
pp. 189-202
Author(s):  
K. M. Nagaraja ◽  
◽  
P. Dhanya ◽  

Sign in / Sign up

Export Citation Format

Share Document