scholarly journals Ground State for the Schrödinger Operator with the Weighted Hardy Potential

2011 ◽  
Vol 2011 ◽  
pp. 1-26
Author(s):  
J. Chabrowski ◽  
K. Tintarev

We establish the existence of ground states on for the Laplace operator involving the Hardy-type potential. This gives rise to the existence of the principal eigenfunctions for the Laplace operator involving weighted Hardy potentials. We also obtain a higher integrability property for the principal eigenfunction. This is used to examine the behaviour of the principal eigenfunction around 0.

2018 ◽  
Vol 18 (4) ◽  
pp. 671-689
Author(s):  
Hardy Chan ◽  
Nassif Ghoussoub ◽  
Saikat Mazumdar ◽  
Shaya Shakerian ◽  
Luiz Fernando de Oliveira Faria

AbstractWe consider the Hardy–Schrödinger operator {L_{\gamma}:=-\Delta_{\mathbb{B}^{n}}-\gamma{V_{2}}} on the Poincaré ball model of the hyperbolic space {\mathbb{B}^{n}} ({n\geq 3}). Here {V_{2}} is a radially symmetric potential, which behaves like the Hardy potential around its singularity at 0, i.e., {V_{2}(r)\sim\frac{1}{r^{2}}}. As in the Euclidean setting, {L_{\gamma}} is positive definite whenever {\gamma<\frac{(n-2)^{2}}{4}}, in which case we exhibit explicit solutions for the critical equation {L_{\gamma}u=V_{2^{*}(s)}u^{2^{*}(s)-1}} in {\mathbb{B}^{n},} where {0\leq s<2}, {2^{*}(s)=\frac{2(n-s)}{n-2}}, and {V_{2^{*}(s)}} is a weight that behaves like {\frac{1}{r^{s}}} around 0. In dimensions {n\geq 5}, the equation {L_{\gamma}u-\lambda u=V_{2^{*}(s)}u^{2^{*}(s)-1}} in a domain Ω of {\mathbb{B}^{n}} away from the boundary but containing 0 has a ground state solution, whenever {0<\gamma\leq\frac{n(n-4)}{4}}, and {\lambda>\frac{n-2}{n-4}(\frac{n(n-4)}{4}-\gamma)}. On the other hand, in dimensions 3 and 4, the existence of solutions depends on whether the domain has a positive “hyperbolic mass” a notion that we introduce and analyze therein.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kazuhiro Ishige ◽  
Yujiro Tateishi

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ H: = -\Delta+V $\end{document}</tex-math></inline-formula> be a nonnegative Schrödinger operator on <inline-formula><tex-math id="M2">\begin{document}$ L^2({\bf R}^N) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ N\ge 2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ V $\end{document}</tex-math></inline-formula> is a radially symmetric inverse square potential. Let <inline-formula><tex-math id="M5">\begin{document}$ \|\nabla^\alpha e^{-tH}\|_{(L^{p, \sigma}\to L^{q, \theta})} $\end{document}</tex-math></inline-formula> be the operator norm of <inline-formula><tex-math id="M6">\begin{document}$ \nabla^\alpha e^{-tH} $\end{document}</tex-math></inline-formula> from the Lorentz space <inline-formula><tex-math id="M7">\begin{document}$ L^{p, \sigma}({\bf R}^N) $\end{document}</tex-math></inline-formula> to <inline-formula><tex-math id="M8">\begin{document}$ L^{q, \theta}({\bf R}^N) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M9">\begin{document}$ \alpha\in\{0, 1, 2, \dots\} $\end{document}</tex-math></inline-formula>. We establish both of upper and lower decay estimates of <inline-formula><tex-math id="M10">\begin{document}$ \|\nabla^\alpha e^{-tH}\|_{(L^{p, \sigma}\to L^{q, \theta})} $\end{document}</tex-math></inline-formula> and study sharp decay estimates of <inline-formula><tex-math id="M11">\begin{document}$ \|\nabla^\alpha e^{-tH}\|_{(L^{p, \sigma}\to L^{q, \theta})} $\end{document}</tex-math></inline-formula>. Furthermore, we characterize the Laplace operator <inline-formula><tex-math id="M12">\begin{document}$ -\Delta $\end{document}</tex-math></inline-formula> from the view point of the decay of <inline-formula><tex-math id="M13">\begin{document}$ \|\nabla^\alpha e^{-tH}\|_{(L^{p, \sigma}\to L^{q, \theta})} $\end{document}</tex-math></inline-formula>.</p>


1991 ◽  
Vol 119 (1-2) ◽  
pp. 169-175 ◽  
Author(s):  
M. van den Berg

SynopsisWe obtain upper and lower bounds for tr (e−th−etΔ), where H = −Δ + V is a Schrödinger operator on L2 (ℝm), and ℝ is the Laplace operator for ℝm. The bounds are obtained for a class of negative valued Borel measurable potentials with compact support and in L∞(ℝm).


2007 ◽  
Vol 245 (1) ◽  
pp. 213-248 ◽  
Author(s):  
Bénédicte Alziary ◽  
Jacqueline Fleckinger-Pellé ◽  
Peter Takáč

2007 ◽  
Vol 22 (10) ◽  
pp. 1899-1904 ◽  
Author(s):  
RICHARD L. HALL ◽  
WOLFGANG LUCHA

It is shown that the ground-state eigenvalue of a semirelativistic Hamiltonian of the form [Formula: see text] is bounded below by the Schrödinger operator m + β p2 + V, for suitable β>0. An example is discussed.


Sign in / Sign up

Export Citation Format

Share Document