scholarly journals Mass and Extremals Associated with the Hardy–Schrödinger Operator on Hyperbolic Space

2018 ◽  
Vol 18 (4) ◽  
pp. 671-689
Author(s):  
Hardy Chan ◽  
Nassif Ghoussoub ◽  
Saikat Mazumdar ◽  
Shaya Shakerian ◽  
Luiz Fernando de Oliveira Faria

AbstractWe consider the Hardy–Schrödinger operator {L_{\gamma}:=-\Delta_{\mathbb{B}^{n}}-\gamma{V_{2}}} on the Poincaré ball model of the hyperbolic space {\mathbb{B}^{n}} ({n\geq 3}). Here {V_{2}} is a radially symmetric potential, which behaves like the Hardy potential around its singularity at 0, i.e., {V_{2}(r)\sim\frac{1}{r^{2}}}. As in the Euclidean setting, {L_{\gamma}} is positive definite whenever {\gamma<\frac{(n-2)^{2}}{4}}, in which case we exhibit explicit solutions for the critical equation {L_{\gamma}u=V_{2^{*}(s)}u^{2^{*}(s)-1}} in {\mathbb{B}^{n},} where {0\leq s<2}, {2^{*}(s)=\frac{2(n-s)}{n-2}}, and {V_{2^{*}(s)}} is a weight that behaves like {\frac{1}{r^{s}}} around 0. In dimensions {n\geq 5}, the equation {L_{\gamma}u-\lambda u=V_{2^{*}(s)}u^{2^{*}(s)-1}} in a domain Ω of {\mathbb{B}^{n}} away from the boundary but containing 0 has a ground state solution, whenever {0<\gamma\leq\frac{n(n-4)}{4}}, and {\lambda>\frac{n-2}{n-4}(\frac{n(n-4)}{4}-\gamma)}. On the other hand, in dimensions 3 and 4, the existence of solutions depends on whether the domain has a positive “hyperbolic mass” a notion that we introduce and analyze therein.

2011 ◽  
Vol 2011 ◽  
pp. 1-26
Author(s):  
J. Chabrowski ◽  
K. Tintarev

We establish the existence of ground states on for the Laplace operator involving the Hardy-type potential. This gives rise to the existence of the principal eigenfunctions for the Laplace operator involving weighted Hardy potentials. We also obtain a higher integrability property for the principal eigenfunction. This is used to examine the behaviour of the principal eigenfunction around 0.


2021 ◽  
pp. 1-19
Author(s):  
Jing Zhang ◽  
Lin Li

In this paper, we consider the following Schrödinger equation (0.1) − Δ u − μ u | x | 2 + V ( x ) u = K ( x ) | u | 2 ∗ − 2 u + f ( x , u ) , x ∈ R N , u ∈ H 1 ( R N ) , where N ⩾ 4, 0 ⩽ μ < μ ‾, μ ‾ = ( N − 2 ) 2 4 , V is periodic in x, K and f are asymptotically periodic in x, we take advantage of the generalized Nehari manifold approach developed by Szulkin and Weth to look for the ground state solution of (0.1).


2014 ◽  
Vol 57 (3) ◽  
pp. 519-541
Author(s):  
HAIYANG HE

Abstract(0.1) \begin{equation}\label{eq:0.1} \left\{ \begin{array}{ll} \displaystyle -\Delta_{\mathbb{H}^{N}}u=|v|^{p-1}v x, \\ \displaystyle -\Delta_{\mathbb{H}^{N}}v=|u|^{q-1}u, \\ \end{array} \right. \end{equation} in the whole Hyperbolic space ℍN. We establish decay estimates and symmetry properties of positive solutions. Unlike the corresponding problem in Euclidean space ℝN, we prove that there is a positive solution pair (u, v) ∈ H1(ℍN) × H1(ℍN) of problem (0.1), moreover a ground state solution is obtained. Furthermore, we also prove that the above problem has a radial positive solution.


2012 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Die Hu ◽  
Xianhua Tang ◽  
Qi Zhang

<p style='text-indent:20px;'>In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1a"> \begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M2">\begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document}</tex-math></inline-formula>. Under some "Berestycki-Lions type assumptions" on the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> which are almost necessary, we prove that problem <inline-formula><tex-math id="M6">\begin{document}$ (\rm P) $\end{document}</tex-math></inline-formula> has a nontrivial solution <inline-formula><tex-math id="M7">\begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M8">\begin{document}$ \bar{v} = G(\bar{u}) $\end{document}</tex-math></inline-formula> is a ground state solution of the following problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1b"> \begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M9">\begin{document}$ G(t): = \int_{0}^{t} g(s) ds $\end{document}</tex-math></inline-formula>. We also give a minimax characterization for the ground state solution <inline-formula><tex-math id="M10">\begin{document}$ \bar{v} $\end{document}</tex-math></inline-formula>.</p>


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang ◽  
Qiongfen Zhang

AbstractIn this paper, we focus on the existence of solutions for the Choquard equation $$\begin{aligned} \textstyle\begin{cases} {-}\Delta {u}+V(x)u=(I_{\alpha }* \vert u \vert ^{\frac{\alpha }{N}+1}) \vert u \vert ^{ \frac{\alpha }{N}-1}u+\lambda \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$ { − Δ u + V ( x ) u = ( I α ∗ | u | α N + 1 ) | u | α N − 1 u + λ | u | p − 2 u , x ∈ R N ; u ∈ H 1 ( R N ) , where $\lambda >0$ λ > 0 is a parameter, $\alpha \in (0,N)$ α ∈ ( 0 , N ) , $N\ge 3$ N ≥ 3 , $I_{\alpha }: \mathbb{R}^{N}\to \mathbb{R}$ I α : R N → R is the Riesz potential. As usual, $\alpha /N+1$ α / N + 1 is the lower critical exponent in the Hardy–Littlewood–Sobolev inequality. Under some weak assumptions, by using minimax methods and Pohožaev identity, we prove that this problem admits a ground state solution if $\lambda >\lambda _{*}$ λ > λ ∗ for some given number $\lambda _{*}$ λ ∗ in three cases: (i) $2< p<\frac{4}{N}+2$ 2 < p < 4 N + 2 , (ii) $p=\frac{4}{N}+2$ p = 4 N + 2 , and (iii) $\frac{4}{N}+2< p<2^{*}$ 4 N + 2 < p < 2 ∗ . Our result improves the previous related ones in the literature.


2007 ◽  
Vol 245 (1) ◽  
pp. 213-248 ◽  
Author(s):  
Bénédicte Alziary ◽  
Jacqueline Fleckinger-Pellé ◽  
Peter Takáč

2007 ◽  
Vol 22 (10) ◽  
pp. 1899-1904 ◽  
Author(s):  
RICHARD L. HALL ◽  
WOLFGANG LUCHA

It is shown that the ground-state eigenvalue of a semirelativistic Hamiltonian of the form [Formula: see text] is bounded below by the Schrödinger operator m + β p2 + V, for suitable β>0. An example is discussed.


Sign in / Sign up

Export Citation Format

Share Document