scholarly journals The Dynamic Complexity of a Holling Type-IV Predator-Prey System with Stage Structure and Double Delays

2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Yakui Xue ◽  
Xiafeng Duan

We invest a predator-prey model of Holling type-IV functional response with stage structure and double delays due to maturation time for both prey and predator. The dynamical behavior of the system is investigated from the point of view of stability switches aspects. We assume that the immature and mature individuals of each species are divided by a fixed age, and the mature predator only attacks the mature prey. Based on some comparison arguments, sharp threshold conditions which are both necessary and sufficient for the global stability of the equilibrium point of predator extinction are obtained. The most important outcome of this paper is that the variation of predator stage structure can affect the existence of the interior equilibrium point and drive the predator into extinction by changing the maturation (through-stage) time delay. Our linear stability work and numerical results show that if the resource is dynamic, as in nature, there is a window in maturation time delay parameters that generate sustainable oscillatory dynamics.

2019 ◽  
Vol 17 (1) ◽  
pp. 141-159 ◽  
Author(s):  
Zaowang Xiao ◽  
Zhong Li ◽  
Zhenliang Zhu ◽  
Fengde Chen

Abstract In this paper, we consider a Beddington-DeAngelis predator-prey system with stage structure for predator and time delay incorporating prey refuge. By analyzing the characteristic equations, we study the local stability of the equilibrium of the system. Using the delay as a bifurcation parameter, the model undergoes a Hopf bifurcation at the coexistence equilibrium when the delay crosses some critical values. After that, by constructing a suitable Lyapunov functional, sufficient conditions are derived for the global stability of the system. Finally, the influence of prey refuge on densities of prey species and predator species is discussed.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250014 ◽  
Author(s):  
LIJUAN ZHA ◽  
JING-AN CUI ◽  
XUEYONG ZHOU

Ratio-dependent predator–prey models are favored by many animal ecologists recently as more suitable ones for predator–prey interactions where predation involves searching process. In this paper, a ratio-dependent predator–prey model with stage structure and time delay for prey is proposed and analyzed. In this model, we only consider the stage structure of immature and mature prey species and not consider the stage structure of predator species. We assume that the predator only feed on the mature prey and the time for prey from birth to maturity represented by a constant time delay. At first, we investigate the permanence and existence of the proposed model and sufficient conditions are derived. Then the global stability of the nonnegative equilibria are derived. We also get the sufficient criteria for stability switch of the positive equilibrium. Finally, some numerical simulations are carried out for supporting the analytic results.


2022 ◽  
Vol 355 ◽  
pp. 03048
Author(s):  
Bochen Han ◽  
Shengming Yang ◽  
Guangping Zeng

In this paper, we consider a predator-prey system with two time delays, which describes a prey–predator model with parental care for predators. The local stability of the positive equilibrium is analysed. By choosing the two time delays as the bifurcation parameter, the existence of Hopf bifurcation is studied. Numerical simulations show the positive equilibrium loses its stability via the Hopf bifurcation when the time delay increases beyond a threshold.


2021 ◽  
Vol 18 (1) ◽  
pp. 12-21
Author(s):  
Nur Suci Ramadhani ◽  
Toaha Toaha ◽  
Kasbawati Kasbawati

In this paper, the modified Leslie-Gower predator-prey model with simplified Holling type IV functional response is discussed. It is assumed that the prey population is a dangerous population. The equilibrium point of the model and the stability of the coexistence equilibrium point are analyzed. The simulation results show that both prey and predator populations will not become extinct as time increases. When the prey population density increases, there is a decrease in the predatory population density because the dangerous prey population has a better ability to defend itself from predators when the number is large enough.


2020 ◽  
Vol 38 (4) ◽  
pp. 647-667
Author(s):  
Qun Liu ◽  
Daqing Jiang ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

Sign in / Sign up

Export Citation Format

Share Document