scholarly journals Ludwig: A Training Simulator of the Safety Operation of a CANDU Reactor

2011 ◽  
Vol 2011 ◽  
pp. 1-8
Author(s):  
Gustavo Boroni ◽  
Alejandro Clausse

This paper presents the applicationLudwigdesigned to train operators of a CANDU Nuclear Power Plant (NPP) by means of a computer control panel that simulates the response of the evolution of the physical variables of the plant under normal transients. The model includes a close set of equations representing the principal components of a CANDU NPP plant, a nodalized primary circuit, core, pressurizer, and steam generators. The design of the application was performed using the object-oriented programming paradigm, incorporating an event-driven process to reflect the action of the human operators and the automatic control system. A comprehensive set of online graphical displays are provided giving an in-depth understanding of transient neutronic and thermal hydraulic response of the power plant. The model was validated against data from a real transient occurring in the Argentine NPP Embalse Río Tercero, showing good agreement. However, it should be stressed that the aim of the simulator is in the training of operators and engineering students.

1981 ◽  
Vol 25 (1) ◽  
pp. 110-114 ◽  
Author(s):  
David D. Woods ◽  
John A. Wise ◽  
Lewis F. Hanes

Two proposed safety parameter display systems, of the type to be required in nuclear power plant control rooms, were evaluated using a training simulator and experienced crews undergoing refresher training. A decision analysis approach was used. The discussion addresses the effectiveness of the training situation as an evaluation tool and methodological issues.


Author(s):  
Shanfang Huang ◽  
Jiageng Wang ◽  
Yisheng Hao ◽  
Guodong Liu ◽  
Minyun Liu ◽  
...  

Abstract The Fukushima nuclear accident in Japan caused a significant impact on the nuclear power industry and public attitudes towards nuclear energy. The decreased public acceptance and the regulatory authorities’ stricter requirements of nuclear safety lead to the popularity of advanced safety technologies in scientific research and engineering projects. The demand for highly qualified human resources increases by the gradual recovery of the nuclear power field in China. In order to meet this demand, a series of course innovations are taken at Tsinghua University. Focusing on the course “Nuclear Power Plant Systems and Equipment,” the paper discusses the innovations of the course stimulated by the current industry trends and demands. A brief introduction to the special commissioned-student program at Tsinghua University is given. The paper investigates the meaning and function of the course in the frame of the curriculum plan for nuclear engineering students at Tsinghua University. The personal career plan, the industry outlook, and even the public attitudes contribute to senior students’ attitudes and demands for the course, which is tied closely to the effect of teaching. The paper addresses that the objective of the innovations is to develop a course fixing different students’ demands and help them build their ability to solve practical engineering problems in their future professional careers. The selection of teaching contents and the teaching strategy are discussed. This course takes Westinghouse AP1000 as the major point. And the nuclear power plant systems are taught in a divided way. One is the operation system, and the other is the safety system. This separation is based on the different functions and roles of these two parts and could have advantages in teaching effect. The paper explains the critical points of the systems and innovations of how to deal with course difficulties. There is a corresponding part of the safety system, and this part gets more challenges due to the industry trends. Lectures, group discussions, homework, and presentation projects are discussed. Besides, the paper considers possible efforts for further development of nuclear engineering courses.


Author(s):  
Thomas Wermelinger ◽  
Florian Bruckmüller ◽  
Benedikt Heinz

In the context of long-term operation or lifetime extension most regulatory bodies demand from utilities and operators of nuclear power plants to monitor and evaluate the fatigue of system, structures and components systematically. As does the Swiss Federal Nuclear Safety Inspectorate ENSI. The nuclear power plant Goesgen started its commercial operation in 1979 and will go into long-term operation in 2019. The increased demand for monitoring and evaluating fatigue due to the pending long-term operation led the Goesgen nuclear power plant to expand the scope of their surveillance and therefore to install AREVA’s fatigue monitoring system FAMOSi in the 2014 outage. The system consists of 39 measurement sections positioned at the primary circuit and the feed-water nozzles of the steam generators. The locations were chosen due to their sensitivity for fatigue. The installed FAMOSi system consists of a total of 173 thermocouples which were mounted in order to get the necessary input data for load evaluation. The advantage of FAMOSi is the possibility to obtain real data of transients near places with highest fatigue usage factors. Examples of steam generator feed-in during heating-up and cooling-down will be given. In addition, spray events before and after the installation of closed loop controlled spray valves will be compared. The measurements and the results of the load evaluation are not only of interest for internal use e.g. in regard to optimization of operation modes (e.g. load-following), but must also be reported to ENSI annually. In addition, by evaluation of stresses and determination of usage factors combined with an optimization of operation modes an early exchange of components can be avoided.


2008 ◽  
Vol 41 (2) ◽  
pp. 10640-10645
Author(s):  
Csaba Fazekas ◽  
Gábor Szederkényi ◽  
Katalin M. Hangos

2013 ◽  
Vol 23 (4) ◽  
pp. 455-471 ◽  
Author(s):  
Mariusz Czapliński ◽  
Paweł Sokólski ◽  
Kazimierz Duzinkiewicz ◽  
Robert Piotrowski ◽  
Tomasz Rutkowski

Abstract The pressurizer water level control system in nuclear power plant with pressurized water reactor (PWR) is responsible for coolant mass balance. The main control goal is to stabilize the water level at a reference value and to suppress the effect of time-varying disturbances (e.g. coolant leakage in primary circuit pipeline system). In the process of PWR power plant operation incorrect water level may disturb pressure control or may cause damage to electric heaters which could threaten plant security and stability. In modern reactors standard PID controllers are used to control water level in a pressurizer. This paper describes the performance of state feedback integral controller (SFIC) with reduced-order Luenberger state observer designed for water level control in a pressurizer and compares it to the standard PID controller. All steps from modeling of a pressurizer through control design to implementation and simulation testing in Matlab/Simulink environment are detailed in the paper.


Sign in / Sign up

Export Citation Format

Share Document