scholarly journals Flying Instability due to Organic Compounds in Hard Disk Drive

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Koji Sonoda

The influence of organic compounds (OCs) on the head-disk interface (HDI) was investigated in hard disk drives. The drives were tested at high temperature to investigate the influence of gaseous OC and to confirm if the gaseous OC forms droplets on head or disk. In the experiment, errors occurred by readback signal jump and we observed the droplets on the disk after full stroke seek operation of the drive. Our results indicate that the gaseous OC condensed on the slider and caused flying instability resulting in drive failure due to slider contact with a droplet of liquid OC. Furthermore, this study shows that kinetic viscosity of OC is an important factor to cause drive failure using alkane reagents.

Author(s):  
Aravind N. Murthy ◽  
Eric M. Jayson ◽  
Frank E. Talke

Most hard disk drives manufactured in the last few years have Load/Unload (L/UL) technology. As opposed to the Contact Start/Stop (CSS) technology, L/UL technology has the advantage of improved areal density because of more disk space availability and better shock performance. The latter characteristic has significant benefits during the non-operational state of the hard disk drive since head/disk interactions are eliminated and the head is parked on a ramp adjacent to the disk. However, even if head/disk interactions are absent, other failure modes may occur such as lift-tab damage and dimple separation leading to flexure damage. A number of investigations have been made to study the response of the head disk interface with respect to shock when the head is parked on the disk ([1], [2]). In this paper, we address the effect of non-operational shock for L/UL disk drives.


Author(s):  
Rahul Rai ◽  
Puneet Bhargava ◽  
Bernhard Knigge ◽  
Aravind N. Murthy

Abstract Growth in the demand for higher capacity hard disk drives (HDD) has pushed the requirement for head-media spacing (HMS) to sub-nanometer levels. The drop in operational clearance makes a head-disk interface (HDI) more susceptible to potential head-wear and contamination related issues. Such degradation processes are often accompanied by a noticeable shift in the head-disk clearance. Hence monitoring an interface for a spacing change can be helpful in early detection of its imminent failure. In this paper, we present a method to detect the change in head-disk spacing using an embedded contact sensor (ECS). This technique involves the analysis of ECS dynamic response for an interface that is subjected to heater induced spacing modulations. As the head moves closer to the disk surface, the magnitude of the ECS frequency components can be used to determine the ‘characteristic spacing’ which can be used as a metric to detect any physical change for a given interface.


Author(s):  
Eric M. Jayson ◽  
Frank E. Talke

Hard disk drives must be designed to withstand shock during operation. Large movements of the slider during shock impulse can cause reading and writing errors, track misregistration, or in extreme cases, damage to the magnetic material and loss of data. The design of the air bearing contour determines the steady state flying conditions of the slider as well as dynamic flying conditions, including shock response. In this paper a finite element model of the hard disk drive mechanical components was developed to determine the time dependent forces and moments applied to the slider during a shock event. The time dependent forces and moments are applied as external loads in a solution of the dynamic Reynolds equation to determine the slider response to a shock event. The genetic algorithm was then used to optimize the air bearing contour for optimum shock response while keeping the steady flying conditions constant. The results show substantial differences in the spacing modulation of the head/disk interface after a shock as a function of the design of the air bearing contour.


Author(s):  
Rohit P. Ambekar ◽  
David B. Bogy

The touchdown-takeoff velocity hysteresis observed in hard disk drives during CSS or L/UL tests is analyzed using an experimental approach. Tests similar to L/UL were conducted for different slider-disk combinations at different humidities. Factors affecting the touchdown and takeoff velocity were identified on the basis of their domain of operation. It is concluded that the intermolecular forces and meniscus forces are contributing factors to hysteresis, which is also influenced by disk topography and slider dynamics.


2005 ◽  
Vol 127 (1) ◽  
pp. 171-179 ◽  
Author(s):  
Wei Peng ◽  
James Kiely ◽  
Yiao-Tee Hsia

To achieve a higher storage density in a hard disk drive, the fly height of the air bearing slider, as part of the magnetic spacing, has to be minimized. At an ultralow fly height, the intermittent–continuous contact at the head–disk interface (HDI) is unavoidable and directly affects the mechanical and magnetic performance of the hard disk drive, and is of great interest. The HDI wear has a nonlinear and time-varying nature due to the change of contact force and roughness. To predict the HDI wear evolution, an iterative model of Coupled Head And Disk (CHAD) wear, is developed based on the contact mechanics. In this model, a composite transient wear coefficient is adopted and multiple phases of the wear evolution are established. A comprehensive contact stiffness is derived to characterize the contact at the HDI. The abrasive and adhesive wear is calculated based on the extended Archard’s wear law. The plastic and elastic contact areas are calculated with a three-dimensional (3D) sliding contact model. Based on the CHAD wear model, for the first time, the coupling between head and disk wear evolutions is thoroughly investigated. Accelerated wear tests have also been performed to verify the disk wear effect on the slider wear. A wear coefficient drop with time is observed during the tests and it is attributed to a wear mechanism shift from abrasive to adhesive wear. A shift in the type of contact from plastic to elastic accounts for the wear mechanism change.


Sign in / Sign up

Export Citation Format

Share Document