scholarly journals Adaptive Parameters for a Modified Comprehensive Learning Particle Swarm Optimizer

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Jun Zheng ◽  
Hai-Feng Ling ◽  
Qiu Guan

Particle swarm optimization (PSO) is a stochastic optimization method sensitive to parameter settings. The paper presents a modification on the comprehensive learning particle swarm optimizer (CLPSO), which is one of the best performing PSO algorithms. The proposed method introduces a self-adaptive mechanism that dynamically changes the values of key parameters including inertia weight and acceleration coefficient based on evolutionary information of individual particles and the swarm during the search. Numerical experiments demonstrate that our approach with adaptive parameters can provide comparable improvement in performance of solving global optimization problems.

2015 ◽  
Vol 24 (05) ◽  
pp. 1550017 ◽  
Author(s):  
Aderemi Oluyinka Adewumi ◽  
Akugbe Martins Arasomwan

This paper presents an improved particle swarm optimization (PSO) technique for global optimization. Many variants of the technique have been proposed in literature. However, two major things characterize many of these variants namely, static search space and velocity limits, which bound their flexibilities in obtaining optimal solutions for many optimization problems. Furthermore, the problem of premature convergence persists in many variants despite the introduction of additional parameters such as inertia weight and extra computation ability. This paper proposes an improved PSO algorithm without inertia weight. The proposed algorithm dynamically adjusts the search space and velocity limits for the swarm in each iteration by picking the highest and lowest values among all the dimensions of the particles, calculates their absolute values and then uses the higher of the two values to define a new search range and velocity limits for next iteration. The efficiency and performance of the proposed algorithm was shown using popular benchmark global optimization problems with low and high dimensions. Results obtained demonstrate better convergence speed and precision, stability, robustness with better global search ability when compared with six recent variants of the original algorithm.


2019 ◽  
Vol 18 (03) ◽  
pp. 833-866 ◽  
Author(s):  
Mi Li ◽  
Huan Chen ◽  
Xiaodong Wang ◽  
Ning Zhong ◽  
Shengfu Lu

The particle swarm optimization (PSO) algorithm is simple to implement and converges quickly, but it easily falls into a local optimum; on the one hand, it lacks the ability to balance global exploration and local exploitation of the population, and on the other hand, the population lacks diversity. To solve these problems, this paper proposes an improved adaptive inertia weight particle swarm optimization (AIWPSO) algorithm. The AIWPSO algorithm includes two strategies: (1) An inertia weight adjustment method based on the optimal fitness value of individual particles is proposed, so that different particles have different inertia weights. This method increases the diversity of inertia weights and is conducive to balancing the capabilities of global exploration and local exploitation. (2) A mutation threshold is used to determine which particles need to be mutated. This method compensates for the inaccuracy of random mutation, effectively increasing the diversity of the population. To evaluate the performance of the proposed AIWPSO algorithm, benchmark functions are used for testing. The results show that AIWPSO achieves satisfactory results compared with those of other PSO algorithms. This outcome shows that the AIWPSO algorithm is conducive to balancing the abilities of the global exploration and local exploitation of the population, while increasing the diversity of the population, thereby significantly improving the optimization ability of the PSO algorithm.


Author(s):  
Shafiullah Khan ◽  
Shiyou Yang ◽  
Obaid Ur Rehman

Purpose The aim of this paper is to explore the potential of particle swarm optimization (PSO) algorithm to solve an electromagnetic inverse problem. Design/methodology/approach A modified PSO algorithm is designed. Findings The modified PSO algorithm is a more stable, robust and efficient global optimizer for solving the well-known benchmark optimization problems. The new mutation approach preserves the diversity of the population, whereas the proposed dynamic and adaptive parameters maintain a good balance between the exploration and exploitation searches. The numerically experimental results of two case studies demonstrate the merits of the proposed algorithm. Originality/value Some improvements, such as the design of a new global mutation mechanism and introducing a novel strategy for learning and control parameters, are proposed.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Martins Akugbe Arasomwan ◽  
Aderemi Oluyinka Adewumi

Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted.


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740073 ◽  
Author(s):  
Song Huang ◽  
Yan Wang ◽  
Zhicheng Ji

Multi-objective optimization problems (MOPs) need to be solved in real world recently. In this paper, a multi-objective particle swarm optimization based on Pareto set and aggregation approach was proposed to deal with MOPs. Firstly, velocities and positions were updated similar to PSO. Then, global-best set was defined in particle swarm optimizer to preserve Pareto-based set obtained by the population. Specifically, a hybrid updating strategy based on Pareto set and aggregation approach was introduced to update the global-best set and local search was carried on global-best set. Thirdly, personal-best positions were updated in decomposition way, and global-best position was selected from global-best set. Finally, ZDT instances and DTLZ instances were selected to evaluate the performance of MULPSO and the results show validity of the proposed algorithm for MOPs.


2019 ◽  
Vol 8 (3) ◽  
pp. 8259-8265

Particle swarm optimization (PSO) is one of the most capable algorithms that reside to the swarm intelligence (SI) systems. Recently, it becomes very popular and renowned because of the easy implementation in complex/real life optimization problems. However, PSO has some observable drawbacks such as diversity maintenance, pre convergence and/or slow convergence speed. The ultimate success of PSO depends on the velocity update of the particles. Velocity has a significant dependence on its multiplied coefficient like inertia weight and acceleration factors. To increase the ability of PSO, this paper introduced an enriched PSO (namely ePSO), to solve hard optimization problems more precisely, efficiently and reliably. In ePSO novel gradually decreased inertia weight (as an alternative of a fixed constant value) and new gradually decreased and/or increased acceleration factors (meant for cognitive and social modules) is introduced. Proposed ePSO is used to solve four well known typical unconstrained benchmark functions and four complex unconstrained real life problems. The overall observation shows that proposed new algorithm ePSO is fitter than the compared algorithms significantly and statistically. Moreover, the convergence accuracy and speed of ePSO are also improved effectively


Author(s):  
Tetsuyuki Takahama ◽  
◽  
Setsuko Sakai ◽  

In this study, α constrained particle swarm optimizer αPSO, which is the combination of the α constrained method and particle swarm optimization, is proposed to solve constrained optimization problems. The α constrained methods can convert algorithms for unconstrained problems to algorithms for constrained problems using the α level comparison, which compares the search points based on the satisfaction level of constraints. In the αPSO, the agents who satisfy the constraints move to optimize the objective function and the agents who don't satisfy the constraints move to satisfy the constraints. The effectiveness of the αPSO is shown by comparing the αPSO with GENOCOP5.0, and other PSO-based methods on some nonlinear constrained problems.


Sign in / Sign up

Export Citation Format

Share Document