scholarly journals Robust Exponential Stability for LPD Discrete-Time System with Interval Time-Varying Delay

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Kanit Mukdasai

This paper investigates the problem of robust exponential stability for uncertain linear-parameter dependent (LPD) discrete-time system with delay. The delay is of an interval type, which means that both lower and upper bounds for the time-varying delay are available. The uncertainty under consideration is norm-bounded uncertainty. Based on combination of the linear matrix inequality (LMI) technique and the use of suitable Lyapunov-Krasovskii functional, new sufficient conditions for the robust exponential stability are obtained in terms of LMI. Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Wei Kang ◽  
Hao Chen ◽  
Kaibo Shi ◽  
Jun Cheng

This paper investigates the problem of reachable set bounding for discrete-time system with time-varying delay and bounded disturbance inputs. Together with a new Lyapunov-Krasovskii functional, discrete Wirtinger-based inequality, and reciprocally convex approach, sufficient conditions are derived to find an ellipsoid to bound the reachable sets of discrete-time delayed system. The main advantage of this paper lies in two aspects: first, the initial state vectors are not necessarily zero; second, the obtained criteria in this paper do not really require all the symmetric matrices involved in the employed Lyapunov-Krasovskii functional to be positive definite. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed method.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


2013 ◽  
Vol 479-480 ◽  
pp. 983-988
Author(s):  
Jenq Der Chen ◽  
Chang Hua Lien ◽  
Ker Wei Yu ◽  
Chin Tan Lee ◽  
Ruey Shin Chen ◽  
...  

In this paper, the switching signal design to robust exponential stability for discrete-time switched systems with interval time-varying delay is considered. LMI-based conditions are proposed to guarantee the global exponential stability for such system with parametric perturbations by using a switching signal. The appropriate Lyapunov functionals are used to reduce the conservativeness of systems. Finally, a numerical example is illustrated to show the main results.


2009 ◽  
Vol 19 (04) ◽  
pp. 269-283 ◽  
Author(s):  
TAO LI ◽  
AIGUO SONG ◽  
SHUMIN FEI

This paper investigates robust exponential stability for discrete-time recurrent neural networks with both time-varying delay (0 ≤ τm ≤ τ(k) ≤ τM) and distributed one. Through partitioning delay intervals [0,τm] and [τm,τM], respectively, and choosing an augmented Lyapunov-Krasovskii functional, the delay-dependent sufficient conditions are obtained by using free-weighting matrix and convex combination methods. These criteria are presented in terms of linear matrix inequalities (LMIs) and their feasibility can be easily checked by resorting to LMI in Matlab Toolbox in Ref. 1. The activation functions are not required to be differentiable or strictly monotonic, which generalizes those earlier forms. As an extension, we further consider the robust stability of discrete-time delayed Cohen-Grossberg neural networks. Finally, the effectiveness of the proposed results is further illustrated by three numerical examples in comparison with the reported ones.


2021 ◽  
Vol 20 ◽  
pp. 88-97
Author(s):  
Mengying Ding ◽  
Yali Dong

This paper investigates the problem of robust H∞ observer-based control for a class of discrete-time nonlinear systems with time-varying delays and parameters uncertainties. We propose an observer-based controller. By constructing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are developed to ensure the closed-loop system is robust asymptotically stable with H∞ performance in terms of the linear matrix inequalities. Finally, a numerical example is given to illustrate the efficiency of proposed methods.


Sign in / Sign up

Export Citation Format

Share Document