scholarly journals Further Results on Reachable Set Bounding for Discrete-Time System with Time-Varying Delay and Bounded Disturbance Inputs

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Wei Kang ◽  
Hao Chen ◽  
Kaibo Shi ◽  
Jun Cheng

This paper investigates the problem of reachable set bounding for discrete-time system with time-varying delay and bounded disturbance inputs. Together with a new Lyapunov-Krasovskii functional, discrete Wirtinger-based inequality, and reciprocally convex approach, sufficient conditions are derived to find an ellipsoid to bound the reachable sets of discrete-time delayed system. The main advantage of this paper lies in two aspects: first, the initial state vectors are not necessarily zero; second, the obtained criteria in this paper do not really require all the symmetric matrices involved in the employed Lyapunov-Krasovskii functional to be positive definite. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed method.

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Kanit Mukdasai

This paper investigates the problem of robust exponential stability for uncertain linear-parameter dependent (LPD) discrete-time system with delay. The delay is of an interval type, which means that both lower and upper bounds for the time-varying delay are available. The uncertainty under consideration is norm-bounded uncertainty. Based on combination of the linear matrix inequality (LMI) technique and the use of suitable Lyapunov-Krasovskii functional, new sufficient conditions for the robust exponential stability are obtained in terms of LMI. Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.


2016 ◽  
Vol 40 (2) ◽  
pp. 640-646 ◽  
Author(s):  
Junqing Ma ◽  
Feng Pan ◽  
Liuwei Zhou ◽  
Wuneng Zhou ◽  
Zehao Wang

This paper investigates the problem of modelling and stabilization for a wireless based network control system with time delay. A model for the discrete-time system with time-varying delay is established to describe the system, and a static controller is designed that takes the feedback from both state and output into account. Based on Lyapunov stability theory and the linear matrix inequalities method, a new criterion is presented for stabilizing the discrete-time system with time-varying delay, and the corresponding controller parameter is obtained. A numerical example is given to demonstrate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document