scholarly journals Implicit Mann Type Iteration Method Involving Strictly Hemicontractive Mappings in Banach Spaces

2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Arif Rafiq ◽  
Shin Min Kang

We proved that the modified implicit Mann iteration process can be applied to approximate the fixed point of strictly hemicontractive mappings in smooth Banach spaces.

2019 ◽  
Vol 26 (4) ◽  
pp. 629-636
Author(s):  
Monther Rashed Alfuraidan

Abstract Let {(X,\lVert\,\cdot\,\rVert)} be a Banach space. Let C be a nonempty, bounded, closed and convex subset of X and let {T:C\rightarrow C} be a G-monotone nonexpansive mapping. In this work, it is shown that the Mann iteration sequence defined by x_{n+1}=t_{n}T(x_{n})+(1-t_{n})x_{n},\quad n=1,2,\dots, proves the existence of a fixed point of G-monotone nonexpansive mappings.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Buthinah A. Bin Dehaish ◽  
Rawan K. Alharbi

The present paper seeks to illustrate approximation theorems to the fixed point for generalized α -nonexpansive mapping with the Mann iteration process. Furthermore, the same results are established with the Ishikawa iteration process in the uniformly convex Banach space setting. The presented results expand and refine many of the recently reported results in the literature.


2017 ◽  
Vol 33 (3) ◽  
pp. 335-342
Author(s):  
M. A. KHAMSI ◽  
◽  
A. R. KHAN ◽  
◽  

We introduce the concept of a multivalued asymptotically nonexpansive mapping and establish Goebel and Kirk fixed point theorem for these mappings in uniformly hyperbolic metric spaces. We also define a modified Mann iteration process for this class of mappings and obtain an extension of some well-known results for singlevalued mappings defined on linear as well as nonlinear domains.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Songnian He ◽  
Wenlong Zhu

LetHbe a real Hilbert space andC⊂H a closed convex subset. LetT:C→Cbe a nonexpansive mapping with the nonempty set of fixed pointsFix(T). Kim and Xu (2005) introduced a modified Mann iterationx0=x∈C,yn=αnxn+(1−αn)Txn,xn+1=βnu+(1−βn)yn, whereu∈Cis an arbitrary (but fixed) element, and{αn}and{βn}are two sequences in(0,1). In the case where0∈C, the minimum-norm fixed point ofTcan be obtained by takingu=0. But in the case where0∉C, this iteration process becomes invalid becausexnmay not belong toC. In order to overcome this weakness, we introduce a new modified Mann iteration by boundary point method (see Section 3 for details) for finding the minimum norm fixed point of Tand prove its strong convergence under some assumptions. Since our algorithm does not involve the computation of the metric projectionPC, which is often used so that the strong convergence is guaranteed, it is easy implementable. Our results improve and extend the results of Kim, Xu, and some others.


2018 ◽  
Vol 29 (5-6) ◽  
pp. 783-792
Author(s):  
Sirintra Khoonyang ◽  
Mintra Inta ◽  
Prasit Cholamjiak

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 481 ◽  
Author(s):  
Buthinah Dehaish ◽  
Mohamed Khamsi

In this work, we extend the fundamental results of Schu to the class of monotone asymptotically nonexpansive mappings in modular function spaces. In particular, we study the behavior of the Fibonacci–Mann iteration process, introduced recently by Alfuraidan and Khamsi, defined by


Sign in / Sign up

Export Citation Format

Share Document