scholarly journals Mann iteration process for monotone nonexpansive mappings with a graph

2019 ◽  
Vol 26 (4) ◽  
pp. 629-636
Author(s):  
Monther Rashed Alfuraidan

Abstract Let {(X,\lVert\,\cdot\,\rVert)} be a Banach space. Let C be a nonempty, bounded, closed and convex subset of X and let {T:C\rightarrow C} be a G-monotone nonexpansive mapping. In this work, it is shown that the Mann iteration sequence defined by x_{n+1}=t_{n}T(x_{n})+(1-t_{n})x_{n},\quad n=1,2,\dots, proves the existence of a fixed point of G-monotone nonexpansive mappings.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Buthinah A. Bin Dehaish ◽  
Rawan K. Alharbi

The present paper seeks to illustrate approximation theorems to the fixed point for generalized α -nonexpansive mapping with the Mann iteration process. Furthermore, the same results are established with the Ishikawa iteration process in the uniformly convex Banach space setting. The presented results expand and refine many of the recently reported results in the literature.


2017 ◽  
Vol 33 (3) ◽  
pp. 335-342
Author(s):  
M. A. KHAMSI ◽  
◽  
A. R. KHAN ◽  
◽  

We introduce the concept of a multivalued asymptotically nonexpansive mapping and establish Goebel and Kirk fixed point theorem for these mappings in uniformly hyperbolic metric spaces. We also define a modified Mann iteration process for this class of mappings and obtain an extension of some well-known results for singlevalued mappings defined on linear as well as nonlinear domains.


2005 ◽  
Vol 2005 (11) ◽  
pp. 1685-1692 ◽  
Author(s):  
Somyot Plubtieng ◽  
Rabian Wangkeeree

Suppose thatCis a nonempty closed convex subset of a real uniformly convex Banach spaceX. LetT:C→Cbe an asymptotically quasi-nonexpansive mapping. In this paper, we introduce the three-step iterative scheme for such map with error members. Moreover, we prove that ifTis uniformlyL-Lipschitzian and completely continuous, then the iterative scheme converges strongly to some fixed point ofT.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
Yongfu Su

The purpose of this article is to present a general viscosity iteration process{xn}which defined byxn+1=(I-αnA)Txn+βnγf(xn)+(αn-βn)xnand to study the convergence of{xn}, whereTis a nonexpansive mapping andAis a strongly positive linear operator, if{αn},{βn}satisfy appropriate conditions, then iteration sequence{xn}converges strongly to the unique solutionx*∈f(T)of variational inequality〈(A−γf)x*,x−x*〉≥0,for allx∈f(T). Meanwhile, a approximate iteration algorithm is presented which is used to calculate the fixed point of nonexpansive mapping and solution of variational inequality, the error estimate is also given. The results presented in this paper extend, generalize, and improve the results of Xu, G. Marino and Xu and some others.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yi-An Chen ◽  
Dao-Jun Wen

In this paper, we introduce a new accelerated iteration for finding a fixed point of monotone generalizedα-nonexpansive mapping in an ordered Banach space. We establish some weak and strong convergence theorems of fixed point for monotone generalizedα-nonexpansive mapping in a uniformly convex Banach space with a partial order. Further, we provide a numerical example to illustrate the convergence behavior and effectiveness of the proposed iteration process.


Author(s):  
Manfred Krüppel ◽  
Jaroslaw Górnicki

The purpose of this paper is to prove the following (nonlinear) mean ergodic theorem: Let E be a uniformly convex Banach space, let C be a nonempty bounded closed convex subset of E and let T: C → C be an asymptotically nonexpansive mapping. Ifexists uniformly in r = 0, 1, 2,…, then the sequence {Tnx} is strongly almost-convergent to a fixed point y of T, that is,uniformly in i = 0, 1, 2, ….


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Songnian He ◽  
Wenlong Zhu

LetHbe a real Hilbert space andC⊂H a closed convex subset. LetT:C→Cbe a nonexpansive mapping with the nonempty set of fixed pointsFix(T). Kim and Xu (2005) introduced a modified Mann iterationx0=x∈C,yn=αnxn+(1−αn)Txn,xn+1=βnu+(1−βn)yn, whereu∈Cis an arbitrary (but fixed) element, and{αn}and{βn}are two sequences in(0,1). In the case where0∈C, the minimum-norm fixed point ofTcan be obtained by takingu=0. But in the case where0∉C, this iteration process becomes invalid becausexnmay not belong toC. In order to overcome this weakness, we introduce a new modified Mann iteration by boundary point method (see Section 3 for details) for finding the minimum norm fixed point of Tand prove its strong convergence under some assumptions. Since our algorithm does not involve the computation of the metric projectionPC, which is often used so that the strong convergence is guaranteed, it is easy implementable. Our results improve and extend the results of Kim, Xu, and some others.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Luo Yi Shi ◽  
Ru Dong Chen

Viscosity approximation methods for nonexpansive mappings in CAT(0) spaces are studied. Consider a nonexpansive self-mappingTof a closed convex subsetCof a CAT(0) spaceX. Suppose that the set Fix(T)of fixed points ofTis nonempty. For a contractionfonCandt∈(0,1), letxt∈Cbe the unique fixed point of the contractionx↦tf(x)⊕(1-t)Tx. We will show that ifXis a CAT(0) space satisfying some property, then{xt}converge strongly to a fixed point ofTwhich solves some variational inequality. Consider also the iteration process{xn}, wherex0∈Cis arbitrary andxn+1=αnf(xn)⊕(1-αn)Txnforn≥1, where{αn}⊂(0,1). It is shown that under certain appropriate conditions onαn,{xn}converge strongly to a fixed point ofTwhich solves some variational inequality.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 481 ◽  
Author(s):  
Buthinah Dehaish ◽  
Mohamed Khamsi

In this work, we extend the fundamental results of Schu to the class of monotone asymptotically nonexpansive mappings in modular function spaces. In particular, we study the behavior of the Fibonacci–Mann iteration process, introduced recently by Alfuraidan and Khamsi, defined by


Sign in / Sign up

Export Citation Format

Share Document