scholarly journals Vibration of Timoshenko Beams Using Non-classical Elasticity Theories

2012 ◽  
Vol 19 (3) ◽  
pp. 251-256 ◽  
Author(s):  
J.V. Araújo dos Santos ◽  
J.N. Reddy

This paper presents a comparison among classical elasticity, nonlocal elasticity, and modified couple stress theories for free vibration analysis of Timoshenko beams. A study of the influence of rotary inertia and nonlocal parameters on fundamental and higher natural frequencies is carried out. The nonlocal natural frequencies are found to be lower than the classical ones, while the natural frequencies estimated by the modified couple stress theory are higher. The modified couple stress theory results depend on the beam cross-sectional size while those of the nonlocal theory do not. Convergence of both non-classical theories to the classical theory is observed as the beam global dimension increases.

2012 ◽  
Vol 04 (03) ◽  
pp. 1250026 ◽  
Author(s):  
J. V. ARAÚJO DOS SANTOS ◽  
J. N. REDDY

A model based on a modified couple stress theory for the free vibration and buckling analyses of beams is presented. The model also incorporates the Poisson's effect and allows the analysis of Timoshenko beams with any arbitrary end boundary condition. The natural frequencies and buckling loads are computed using the Ritz method. Parametric studies show that, while the natural frequencies and the buckling loads increase monotonically with the increase of the material length scale, they present a minimum in certain values of the Poisson's ratio. A study relating the classical elasticity and the couple stress strain energies is also presented. By establishing this relation, explicit formulas to obtain the natural frequencies and buckling loads, in which the couple stress and Poisson's effects are accounted for, in terms of the buckling loads of the classical elasticity are found. These formulas, which are valid when the shear strain and stress are zero, allow an expedite computation of natural frequencies and buckling loads of beams with couple stress and Poisson's effect.


2017 ◽  
Vol 22 (1) ◽  
pp. 55-86 ◽  
Author(s):  
Mohammad Arefi ◽  
Masoud Kiani ◽  
Ashraf M Zenkour

The present work is devoted to the free vibration analysis of elastic three-layered nano-/micro-plate with exponentially graded core and piezomagnetic face-sheets using the modified couple stress theory. To capture size-dependency for a nano-/micro-sized rectangular plate, the couple stress theory is used as a non-classical continuum theory. The rectangular elastic three-layered nano-/micro-plate is resting on Pasternak’s foundation. The present model contains one material length scale parameter and can capture the size effect. Material properties of the core are supposed to vary along the thickness direction based on the exponential function. The governing equations of motion are derived from Hamilton’s principle based on the modified couple stress theory and first-order shear deformation theory. The analytical solution is presented to solve seven governing equations of motion using Navier’s solution. Eventually the natural frequency is scrutinized for different side length ratio, thickness ratio, inhomogeneity parameter, material length scale, and parameters of foundation numerically.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
R. Ansari ◽  
M. A. Ashrafi ◽  
S. Hosseinzadeh

The vibration behavior of piezoelectric microbeams is studied on the basis of the modified couple stress theory. The governing equations of motion and boundary conditions for the Euler-Bernoulli and Timoshenko beam models are derived using Hamilton’s principle. By the exact solution of the governing equations, an expression for natural frequencies of microbeams with simply supported boundary conditions is obtained. Numerical results for both beam models are presented and the effects of piezoelectricity and length scale parameter are illustrated. It is found that the influences of piezoelectricity and size effects are more prominent when the length of microbeams decreases. A comparison between two beam models also reveals that the Euler-Bernoulli beam model tends to overestimate the natural frequencies of microbeams as compared to its Timoshenko counterpart.


2021 ◽  
Vol 2 (2) ◽  
pp. 226-238
Author(s):  
Alireza Babaei ◽  
Masoud Arabghahestani

In this paper, transverse vibration analysis of rotating micro-beam is investigated based on the modified couple stress theory. The simply-supported micro-beam is modeled utilizing Euler-Bernoulli and Timoshenko beam theories. The system is rotating around a fixed axis perpendicular to the axial direction of the beam. For the first time, displacement filed is introduced as a coupled field to the translational field. In other words, the mentioned rotational displacement field is expressed as a proportional function of translational displacement field using first (axial), second (lateral), and third (angular or rotational) velocity factors. Utilizing Hamilton’s approach as a variational method, dynamic-vibration equations of motion of the proposed model are derived. Galerkin’s method is adopted to solve the equation corresponding to the Euler–Bernoulli and Timoshenko beams. For the case considering shear deformation effects, Navier method is chosen. For evaluation of current results and models, they are compared with those available at the benchmark. In this paper; effects of slenderness ratio, axial, lateral, and angular velocity factors, and rotations of the beam on the frequency are reported. Based on the results presented, mentioned factors should be counted in the analysis and design of such rotating micro-systems.


Sign in / Sign up

Export Citation Format

Share Document