scholarly journals Quasilinear Stochastic Cauchy Problem in Abstract Colombeau Spaces

2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Irina V. Melnikova ◽  
Uljana A. Alekseeva

Generalized solutions to the abstract Cauchy problem for a quasilinear equation with the generator of an integrated semigroup and with terms reflecting nonlinear perturbations and white noise type perturbations are under consideration. An abstract stochastic Colombeau algebra is constructed, and solutions in the algebra are studied.

2012 ◽  
Vol 2012 ◽  
pp. 1-26
Author(s):  
Tran Dinh Ke ◽  
Valeri Obukhovskii ◽  
Ngai-Ching Wong ◽  
Jen-Chih Yao

We study the abstract Cauchy problem for a class of integrodifferential equations in a Banach space with nonlinear perturbations and nonlocal conditions. By using MNC estimates, the existence and continuous dependence results are proved. Under some additional assumptions, we study the topological structure of the solution set.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jennifer Bravo ◽  
Carlos Lizama

AbstractWe show that if A is a closed linear operator defined in a Banach space X and there exist $t_{0} \geq 0$ t 0 ≥ 0 and $M>0$ M > 0 such that $\{(im)^{\alpha }\}_{|m|> t_{0}} \subset \rho (A)$ { ( i m ) α } | m | > t 0 ⊂ ρ ( A ) , the resolvent set of A, and $$ \bigl\Vert (im)^{\alpha }\bigl(A+(im)^{\alpha }I \bigr)^{-1} \bigr\Vert \leq M \quad \text{ for all } \vert m \vert > t_{0}, m \in \mathbb{Z}, $$ ∥ ( i m ) α ( A + ( i m ) α I ) − 1 ∥ ≤ M  for all  | m | > t 0 , m ∈ Z , then, for each $\frac{1}{p}<\alpha \leq \frac{2}{p}$ 1 p < α ≤ 2 p and $1< p < 2$ 1 < p < 2 , the abstract Cauchy problem with periodic boundary conditions $$ \textstyle\begin{cases} _{GL}D^{\alpha }_{t} u(t) + Au(t) = f(t), & t \in (0,2\pi ); \\ u(0)=u(2\pi ), \end{cases} $$ { D t α G L u ( t ) + A u ( t ) = f ( t ) , t ∈ ( 0 , 2 π ) ; u ( 0 ) = u ( 2 π ) , where $_{GL}D^{\alpha }$ D α G L denotes the Grünwald–Letnikov derivative, admits a normal 2π-periodic solution for each $f\in L^{p}_{2\pi }(\mathbb{R}, X)$ f ∈ L 2 π p ( R , X ) that satisfies appropriate conditions. In particular, this happens if A is a sectorial operator with spectral angle $\phi _{A} \in (0, \alpha \pi /2)$ ϕ A ∈ ( 0 , α π / 2 ) and $\int _{0}^{2\pi } f(t)\,dt \in \operatorname{Ran}(A)$ ∫ 0 2 π f ( t ) d t ∈ Ran ( A ) .


2020 ◽  
Vol 23 (4) ◽  
pp. 1125-1140
Author(s):  
Andriy Lopushansky ◽  
Oleh Lopushansky ◽  
Anna Szpila

AbstractAn fractional abstract Cauchy problem generated by a sectorial operator is investigated. An inequality of coercivity type for its solution with respect to a complex interpolation scale generated by a sectorial operator with the same parameters is established. An application to differential parabolic initial-boundary value problems in bounded domains with a fractional time derivative is shown.


Author(s):  
PEDRO CATUOGNO ◽  
CHRISTIAN OLIVERA

In this work we introduce a new algebra of stochastic generalized functions. The regular Hida distributions in [Formula: see text] are embedded in this algebra via their chaos expansions. As an application, we prove the existence and uniqueness of the solution of a stochastic Cauchy problem involving singularities.


2015 ◽  
Vol 29 (1) ◽  
pp. 51-59
Author(s):  
Łukasz Dawidowski

AbstractThe abstract Cauchy problem on scales of Banach space was considered by many authors. The goal of this paper is to show that the choice of the space on scale is significant. We prove a theorem that the selection of the spaces in which the Cauchy problem ut − Δu = u|u|s with initial–boundary conditions is considered has an influence on the selection of index s. For the Cauchy problem connected with the heat equation we will study how the change of the base space influents the regularity of the solutions.


Sign in / Sign up

Export Citation Format

Share Document