scholarly journals A Reliable Treatment of Homotopy Perturbation Method for Solving the Nonlinear Klein-Gordon Equation of Arbitrary (Fractional) Orders

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
A. M. A. El-Sayed ◽  
A. Elsaid ◽  
D. Hammad

The reliable treatment of homotopy perturbation method (HPM) is applied to solve the Klein-Gordon partial differential equation of arbitrary (fractional) orders. This algorithm overcomes the difficulty that arises in calculating complicated integrals when solving nonlinear equations. Some numerical examples are presented to illustrate the efficiency of this technique.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Muhammad Sinan ◽  
Kamal Shah ◽  
Zareen A. Khan ◽  
Qasem Al-Mdallal ◽  
Fathalla Rihan

In this study, we investigate the semianalytic solution of the fifth-order Kawahara partial differential equation (KPDE) with the approach of fractional-order derivative. We use Caputo-type derivative to investigate the said problem by using the homotopy perturbation method (HPM) for the required solution. We obtain the solution in the form of infinite series. We next triggered different parametric effects (such as x, t, and so on) on the structure of the solitary wave propagation, demonstrating that the breadth and amplitude of the solitary wave potential may alter when these parameters are changed. We have demonstrated that He’s approach is highly effective and powerful for the solution of such a higher-order nonlinear partial differential equation through our calculations and simulations. We may apply our method to an additional complicated problem, particularly on the applied side, such as astrophysics, plasma physics, and quantum mechanics, to perform complex theoretical computation. Graphical presentation of few terms approximate solutions are given at different fractional orders.


2017 ◽  
Vol 13 (4-1) ◽  
pp. 340-345
Author(s):  
Zainidin K. Eshkuvatov ◽  
Fatimah Samihah Zulkarnain ◽  
Zahriddin Muminov ◽  
Nik Mohd Asri Nik Long

In this paper, modified homotopy perturbation method (MHPM) is applied to solve the general Fredholm-Volterra integro-differential equations (FV-IDEs) of order  with initial conditions. Selective functions and unknown parameters allowed us to obtain two step iterations. It is found that MHPM is a semi-analytical method for FV-IDEs and could avoid complex computations. Numerical examples are given to show the efficiency and reliability of the method. Proof of the convergence of the proposed method is also given. 


2021 ◽  
Vol 2070 (1) ◽  
pp. 012065
Author(s):  
C F Sagar Zephania ◽  
P C Harisankar ◽  
Tapas Sil

Abstract An improved homotopy perturbation method (LH) applied to find approximate solution of KP equation. The results obtained ensure that LH is capable for solving the strongly higher dimension nonlinear partial differential equation such as KP equation. The approximated solution obtained by LH is compared with exact solution.


2016 ◽  
Vol 9 (1) ◽  
pp. 144-156 ◽  
Author(s):  
Majid Ghadiri ◽  
Mohsen Safi

AbstractIn this paper, He's homotopy perturbation method is utilized to obtain the analytical solution for the nonlinear natural frequency of functionally graded nanobeam. The functionally graded nanobeam is modeled using the Eringen's nonlocal elasticity theory based on Euler-Bernoulli beam theory with von Karman nonlinearity relation. The boundary conditions of problem are considered with both sides simply supported and simply supported-clamped. The Galerkin's method is utilized to decrease the nonlinear partial differential equation to a nonlinear second-order ordinary differential equation. Based on numerical results, homotopy perturbation method convergence is illustrated. According to obtained results, it is seen that the second term of the homotopy perturbation method gives extremely precise solution.


Sign in / Sign up

Export Citation Format

Share Document