scholarly journals Isolation of Human Islets for Autologous Islet Transplantation in Children and Adolescents with Chronic Pancreatitis

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Rita Bottino ◽  
Suzanne Bertera ◽  
Maria Grupillo ◽  
Patricia R. Melvin ◽  
Abhinav Humar ◽  
...  

Chronic pancreatitis is an inflammatory disease of the pancreas that causes permanent changes in the function and structure of the pancreas. It is most commonly a complication of cystic fibrosis or due to a genetic predisposition. Chronic pancreatitis generally presents symptomatically as recurrent abdominal pain, which becomes persistent over time. The pain eventually becomes disabling. Once specific medical treatments and endoscopic interventions are no longer efficacious, total pancreatectomy is the alternative of choice for helping the patient achieve pain control. While daily administrations of digestive enzymes cannot be avoided, insulin-dependent diabetes can be prevented by transplanting the isolated pancreatic islets back to the patient. The greater the number of islets infused, the greater the chance to prevent or at least control the effects of surgical diabetes. We present here a technical approach for the isolation and preservation of the islets proven to be efficient to obtain high numbers of islets, favoring the successful treatment of young patients.

Circulation ◽  
1994 ◽  
Vol 90 (1) ◽  
pp. 357-361 ◽  
Author(s):  
T R Kimball ◽  
S R Daniels ◽  
P R Khoury ◽  
R A Magnotti ◽  
A M Turner ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Somayeh Keshtkar ◽  
Maryam Kaviani ◽  
Zahra Jabbarpour ◽  
Fatemeh Sabet Sarvestani ◽  
Mohammad Hossein Ghahremani ◽  
...  

Protection of isolated pancreatic islets against hypoxic and oxidative damage-induced apoptosis is essential during a pretransplantation culture period. A beneficial approach to maintain viable and functional islets is the coculture period with mesenchymal stem cells (MSCs). Hypoxia preconditioning of MSCs (Hpc-MSCs) for a short time stimulates the expression and secretion of antiapoptotic, antioxidant, and prosurvival factors. The aim of the present study was to evaluate the survival and function of human islets cocultured with Hpc-MSCs. Wharton’s jelly-derived MSCs were subjected to hypoxia (5% O2: Hpc) or normoxia (20% O2: Nc) for 24 hours and then cocultured with isolated human islets in direct and indirect systems. Assays of viability and apoptosis, along with the production of reactive oxygen species (ROS), hypoxia-inducible factor 1-alpha (HIF-1α), apoptotic pathway markers, and vascular endothelial growth factor (VEGF) in the islets, were performed. Insulin and C-peptide secretions as islet function were also evaluated. Hpc-MSCs and Nc-MSCs significantly reduced the ROS production and HIF-1α protein aggregation, as well as downregulation of proapoptotic proteins and upregulation of antiapoptotic marker along with increment of VEGF secretion in the cocultured islet. However, the Hpc-MSCs groups were better than Nc-MSCs cocultured islets. Hpc-MSCs in both direct and indirect coculture systems improved the islet survival, while promotion of function was only significant in the direct cocultured cells. Hpc potentiated the cytoprotective and insulinotropic effects of MSCs on human islets through reducing stressful markers, inhibiting apoptosis pathway, enhancing prosurvival factors, and promoting insulin secretion, especially in direct coculture system, suggesting the effective strategy to ameliorate the islet quality for better transplantation outcomes.


Pancreas ◽  
2009 ◽  
Vol 38 (1) ◽  
pp. 105-107 ◽  
Author(s):  
Pier Cristoforo Giulianotti ◽  
Joseph Kuechle ◽  
Payam Salehi ◽  
Veronica Gorodner ◽  
Carlos Galvani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document