isolated pancreatic islets
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 23)

H-INDEX

42
(FIVE YEARS 3)

The creation of a pancreas tissue-engineered construct based on isolated pancreatic islets is hindered by problems associated with maintaining their viability and insulin-producing function. Both biopolymer and tissue-specific scaffolds can contribute to the maintenance of the structure and function of pancreatic islets in vitro and in vivo. A comparative morphofunctional analysis in vitro of isolated pancreatic islets cultured with a biopolymer collagen-containing scaffold and a tissue-specific scaffold obtained as a result of pancreatic decellularization was performed. The results showed that the use of the scaffolds contributes not only to the maintenance of the cultured islets viability, but also to the prolongation of their insulin-producing functions, compared to the islets monoculture in vitro. A significant increase was found in basal and stimulated (under glucose loading) insulin secreted by the islets cultured with the scaffolds. At the same time, the advantage of using a tissue-specific scaffold in comparison with a biopolymer collagen-containing scaffold was shown. We think that these studies will become a platform for creating a human pancreas tissue-engineered design for the treatment of type 1 diabetes.


Author(s):  
Morgane Bayle ◽  
Sylvie Péraldi‐Roux ◽  
Guillaume Gautheron ◽  
Gérard Cros ◽  
Catherine Oiry ◽  
...  

Author(s):  
Maximilian M. Menger ◽  
Lisa Nalbach ◽  
Leticia P. Roma ◽  
Matthias W. Laschke ◽  
Michael D. Menger ◽  
...  

Abstract Aims The exposure of isolated pancreatic islets to pro-angiogenic factors prior to their transplantation represents a promising strategy to accelerate the revascularization of the grafts. It has been shown that erythropoietin (EPO), a glycoprotein regulating erythropoiesis, also induces angiogenesis. Therefore, we hypothesized that EPO exposure of isolated islets improves their posttransplant revascularization. Methods Flow cytometric, immunohistochemical and quantitative real-time (qRT)-PCR analyses were performed to study the effect of EPO on the viability, cellular composition and gene expression of isolated islets. Moreover, islets expressing a mitochondrial or cytosolic H2O2 sensor were used to determine reactive oxygen species (ROS) levels. The dorsal skinfold chamber model in combination with intravital fluorescence microscopy was used to analyze the revascularization of transplanted islets. Results We found that the exposure of isolated islets to EPO (3 units/mL) for 24 h does not affect the viability and the production of ROS when compared to vehicle-treated and freshly isolated islets. However, the exposure of islets to EPO increased the number of CD31-positive cells and enhanced the gene expression of insulin and vascular endothelial growth factor (VEGF)-A. The revascularization of the EPO-cultivated islets was accelerated within the initial phase after transplantation when compared to both controls. Conclusion These findings indicate that the exposure of isolated islets to EPO may be a promising approach to improve clinical islet transplantation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Claudinéia Conationi da Silva Franco ◽  
Carina Previate ◽  
Amanda Bianchi Trombini ◽  
Rosiane Aparecida Miranda ◽  
Luiz Felipe Barella ◽  
...  

Metformin is an antidiabetic drug used for the treatment of diabetes and metabolic diseases. Imbalance in the autonomic nervous system (ANS) is associated with metabolic diseases. This study aimed to test whether metformin could improve ANS function in obese rats. Obesity was induced by neonatal treatment with monosodium L-glutamate (MSG). During 21–100 days of age, MSG-rats were treated with metformin 250 mg/kg body weight/day or saline solution. Rats were euthanized to evaluate biometric and biochemical parameters. ANS electrical activity was recorded and analyzed. Metformin normalized the hypervagal response in MSG-rats. Glucose-stimulated insulin secretion in isolated pancreatic islets increased in MSG-rats, while the cholinergic response decreased. Metformin treatment normalized the cholinergic response, which involved mostly the M3 muscarinic acetylcholine receptor (M3 mAChR) in pancreatic beta-cells. Protein expression of M3 mAChRs increased in MSG-obesity rats, while metformin treatment decreased the protein expression by 25%. In conclusion, chronic metformin treatment was effective in normalizing ANS activity and alleviating obesity in MSG-rats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carine Marmentini ◽  
Gabriela M. Soares ◽  
Gabriela A. Bronczek ◽  
Silvano Piovan ◽  
Cecília E. Mareze-Costa ◽  
...  

Hyperinsulinemia is frequently associated with aging and may cause insulin resistance in elderly. Since insulin secretion and clearance decline with age, hyperinsulinemia seems to be maintained, primarily, due to a decrease in the insulin clearance. To investigate these aging effects, 3- and 18-month-old male C57BL/6 mice were subjected to intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT) and, during the ipGTT, plasma c-peptide and insulin were measure to evaluate in vivo insulin clearance. Glucose-stimulated insulin secretion in isolated pancreatic islets was also assessed, and liver samples were collected for molecular analyses (western blot). Although insulin sensitivity was not altered in the old mice, glucose tolerance, paradoxically, seems to be increased, accompanied by higher plasma insulin, during ipGTT. While insulin secretion did not increase, insulin clearance was reduced in the old mice, as suggested by the lower c-peptide:insulin ratio, observed during ipGTT. Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) and insulin-degrading enzyme (IDE), as well as the activity of this enzyme, were reduced in the liver of old mice, justifying the decreased insulin clearance observed in these mice. Therefore, loss of hepatic CEACAM1 and IDE function may be directly related to the decline in insulin clearance during aging.


2021 ◽  
Vol 22 (8) ◽  
pp. 3950
Author(s):  
Geetali Pradhan ◽  
Chia-Shan Wu ◽  
Daniel Villarreal ◽  
Jong Han Lee ◽  
Hye Won Han ◽  
...  

Growth hormone secretagogue receptor (GHS-R) is widely known to regulate food intake and adiposity, but its role in glucose homeostasis is unclear. In this study, we investigated the expression of GHS-R in mouse pancreatic islets and its role in glycemic regulation. We used Ghsr-IRES-tauGFP mice, with Green Fluorescent Protein (GFP) as a surrogate for GHS-R, to demonstrate the GFP co-localization with insulin and glucagon expression in pancreatic islets, confirming GHS-R expression in β and α cells. We then generated β-cell-specific GHSR-deleted mice with MIP-Cre/ERT and validated that GHS-R suppression was restricted to the pancreatic islets. MIP-Cre/ERT;Ghsrf/f mice showed normal energy homeostasis with similar body weight, body composition, and indirect calorimetry profile. Interestingly, MIP-Cre/ERT;Ghsrf/f mice exhibited an impressive phenotype in glucose homeostasis. Compared to controls, MIP-Cre/ERT;Ghsrf/f mice showed lower fasting blood glucose and insulin; reduced first-phase insulin secretion during a glucose tolerance test (GTT) and glucose-stimulated insulin secretion (GSIS) test in vivo. The isolated pancreatic islets of MIP-Cre/ERT;Ghsrf/f mice also showed reduced insulin secretion during GSIS ex vivo. Further, MIP-Cre/ERT;Ghsrf/f mice exhibited improved insulin sensitivity during insulin tolerance tests (ITT). Overall, our results confirmed GHS-R expression in pancreatic β and α cells; GHS-R cell-autonomously regulated GSIS and modulated systemic insulin sensitivity. In conclusion, β cell GHS-R was an important regulator of glucose homeostasis, and GHS-R antagonists may have therapeutic potential for Type 2 Diabetes.


2021 ◽  
Author(s):  
Victor I Sevastianov ◽  
Natalia V Baranova ◽  
Lyudmila A Kirsanova ◽  
Anna S Ponomareva ◽  
Eugene A Nemets ◽  
...  

Abstract The creation of a tissue-engineered structure of the pancreas based on isolated pancreatic islets is hindered by problems associated with maintaining their viability and insulin-producing function. Both biopolymer and tissue-specific scaffolds can contribute to the preservation of the structure and function of pancreatic islets in vitro and in vivo. Comparative morphofunctional analysis in vitro of two different types of tissue-engineered structures of the pancreas, which represent culture systems of isolated islets with biomimetics of an extracellular matrix - a biopolymer collagen-containing scaffold and a tissue-specific scaffold obtained as a result of pancreatic decellularization, - was performed. The results showed that the use of scaffolds in the creation of a tissue-engineered design of the pancreas contributes not only to the preservation of the viability of the islets, but also to the prolongation of their insulin-producing functions, compared to the monoculture of the islets in vitro. A significant increase was found in the basal and stimulated (under glucose load) insulin concentrations in the tissue of engineered structures studied, at the same time the advantage of using a tissue-specific scaffold compared to a biopolymer collagen-containing scaffold was shown. We think that these studies will become a platform for creating a tissue-engineered design of the human pancreas for treatment of type 1 diabetes mellitus.


Chemosphere ◽  
2021 ◽  
Vol 265 ◽  
pp. 129103
Author(s):  
Michela Novelli ◽  
Pascale Beffy ◽  
Matilde Masini ◽  
Chiara Vantaggiato ◽  
Luisa Martino ◽  
...  

2020 ◽  
Vol 80 (4) ◽  
pp. 152-160
Author(s):  
G. Tusupbekova ◽  
◽  
G. Meiramov ◽  

In the last decades of the twentieth century, in the national economy of many countries, organochlorine pesticides were most widely used, characterized by stability in the external environment, the ability to cumulate in various tissues of organisms. Lindane (the gamma isomer of hexachlorocyclohexane) is listed as a restricted persistent organic pollutant and is an ecotoxic substance with severe and chronic effects on the human body. The study of the effect of lindane on carbohydrate metabolism at the present stage is still insufficient. This fact led to the study of the effect of γ-HCH on the insulinogenic function of the pancreas in in vivo and in vitro experiments. In experiments in vivo, the animals of the experimental groups were once orally administered γ-HCH at a dose equal to 1/5 DL50. Isolated pancreatic islets, precipitated in vitro and fixed on mica plates, were exposed to γ-HCH in amounts equivalent to 1/5 to 1/4 DL50. Paraffin sections of pancreatic tissue from experimental and control animals were stained with aldehyde fuchsin according to Gomori, and tissue preparations were also examined by a highly specific method for detecting insulin in β-cells using diethylpseudoisocyanin staining, followed by examination of the preparations in the ultraviolet light of a luminescent microscope. The samemethods were used to study preparations of isolated pancreatic islet tissue on the 4th day of cultivation. The influence of orally administered γ-HCH on the level of immunoreactive insulin in the blood of experimental animals was also studied. The insulin level was determined by the enzymatic-immunological method. The concentration of IRI was established before the start of the experiment and 4-4.5 hours after acute inoculation. Results and their significance. In the study of stained preparations of the pancreas of experimental animals, numerous islets of ordinary sizes were revealed, the cytoplasm of which was filled with aldehyde-fuccin granularity in quantities indistinguishable from those observed by microscopy of preparations of control animals. The value of the fluorescence coefficient in the histofluorimetric study of the control and experimental preparations did not differ significantly. However, the content of IRI in the blood serum showed a distinct decrease in the first hours after priming. In experiments in vitro, when studying the effect of γ-HCH on cultured tissue, introduced into the nutrient medium on the second day, in the field of view of the microscope, single, small pancreatic islets were revealed. Their number on a constant area of the plates was significantly lower than the value of the same indicator in the study of control preparations. Thus it has been shown that γ-HCH does not affect the histostructure of the endocrine pancreas, but causes a significant decrease in IRI in the blood serum, as well as a change in the histochemical characteristics of cultured β-cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Somayeh Keshtkar ◽  
Maryam Kaviani ◽  
Zahra Jabbarpour ◽  
Fatemeh Sabet Sarvestani ◽  
Mohammad Hossein Ghahremani ◽  
...  

Protection of isolated pancreatic islets against hypoxic and oxidative damage-induced apoptosis is essential during a pretransplantation culture period. A beneficial approach to maintain viable and functional islets is the coculture period with mesenchymal stem cells (MSCs). Hypoxia preconditioning of MSCs (Hpc-MSCs) for a short time stimulates the expression and secretion of antiapoptotic, antioxidant, and prosurvival factors. The aim of the present study was to evaluate the survival and function of human islets cocultured with Hpc-MSCs. Wharton’s jelly-derived MSCs were subjected to hypoxia (5% O2: Hpc) or normoxia (20% O2: Nc) for 24 hours and then cocultured with isolated human islets in direct and indirect systems. Assays of viability and apoptosis, along with the production of reactive oxygen species (ROS), hypoxia-inducible factor 1-alpha (HIF-1α), apoptotic pathway markers, and vascular endothelial growth factor (VEGF) in the islets, were performed. Insulin and C-peptide secretions as islet function were also evaluated. Hpc-MSCs and Nc-MSCs significantly reduced the ROS production and HIF-1α protein aggregation, as well as downregulation of proapoptotic proteins and upregulation of antiapoptotic marker along with increment of VEGF secretion in the cocultured islet. However, the Hpc-MSCs groups were better than Nc-MSCs cocultured islets. Hpc-MSCs in both direct and indirect coculture systems improved the islet survival, while promotion of function was only significant in the direct cocultured cells. Hpc potentiated the cytoprotective and insulinotropic effects of MSCs on human islets through reducing stressful markers, inhibiting apoptosis pathway, enhancing prosurvival factors, and promoting insulin secretion, especially in direct coculture system, suggesting the effective strategy to ameliorate the islet quality for better transplantation outcomes.


Sign in / Sign up

Export Citation Format

Share Document