scholarly journals Photocatalytic Degradation of Municipal Wastewater and Brilliant Blue Dye Using Hydrothermally Synthesized Surface-Modified Silver-Doped ZnO Designer Particles

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Tabasom Parvin ◽  
Namratha Keerthiraj ◽  
Ibrahim Ahmed Ibrahim ◽  
Sukhon Phanichphant ◽  
Kullaiah Byrappa
2020 ◽  
Vol 13 (3) ◽  
pp. 180
Author(s):  
Delwar Hossen ◽  
Rashedul Islam Rana ◽  
D. M. Shafiqul Islam ◽  
Pijush Kanti Roy ◽  
Ashis Kumar Sarker ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal

This study presents a hybridized photocatalyst with adsorbate as a promising nanocomposite for photoremediation of wastewater. Photocatalytic degradation of bromophenol blue (BPB) in aqueous solution under UV-irradiation of wavelength 400 nm was carried out with TiO2 doped with activated carbon (A) and clinoptilolite (Z) via the co-precipitation technique. The physiochemical properties of the nanocomposite (A–TiO2 and Z–TiO2) and TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy. Results of the nanocomposite (A–TiO2 and Z–TiO2) efficiency was compared to that with the TiO2, which demonstrated their adsorption and synergistic effect for the removal of chemical oxygen demand (COD) and color from the wastewater. At an optimal load of 4 g, the photocatalytic degradation activity (Z–TiO2 > A–TiO2 > TiO2) was found favorably by the second-order kinetic model. Consequently, the Langmuir adsorption isotherms favored the nanocomposites (Z–TiO2 > A–TiO2), whereas that of the TiO2 fitted very well on the Freundlich isotherm approach. Z–TiO2 evidently exhibited a high photocatalytic efficacy of decomposition over 80% of BPB (COD) at reaction rate constant (k) and coefficient of determination (R2) values of 5.63 × 10−4 min−1 and 0.989, respectively.


2021 ◽  
pp. 149830
Author(s):  
Fabiola Pantò ◽  
Zainab Dahrouch ◽  
Abhirup Saha ◽  
Salvatore Patanè ◽  
Saveria Santangelo ◽  
...  

2013 ◽  
Vol 726-731 ◽  
pp. 2960-2963
Author(s):  
Ai Hui Liang ◽  
Dong Qin Han ◽  
Hui Yue Gan ◽  
Zhi Liang Jiang

In this paper, the effect of Fe3O4nanoparticle catalytic degradation brilliant blue X-BR dye was studied using spectrophotometric method. It was found that in the media of pH 0.65 HCl-NaAc buffer solution, 100 μmol/L H2O2, 0.7 g/L Fe3O4nanoparticle and the temperature 25°C, the degradation rate for reactive brilliant blue X-BR was over 93.5% in 20 min under the optimal conditions.


Sign in / Sign up

Export Citation Format

Share Document