scholarly journals The Number of Chains of Subgroups in the Lattice of Subgroups of the Dicyclic Group

2012 ◽  
Vol 2012 ◽  
pp. 1-17
Author(s):  
Ju-Mok Oh ◽  
Yunjae Kim ◽  
Kyung-Won Hwang

We give an explicit formula for the number of chains of subgroups in the lattice of subgroups of the dicyclic groupB4nof order4nby finding its generating function of multivariables.


1971 ◽  
Vol 8 (04) ◽  
pp. 708-715 ◽  
Author(s):  
Emlyn H. Lloyd

The present theory of finite reservoirs is not rich in general theorems even when of the simple Moran type, with unit draft and stationary discrete independent-sequence inflows. For the corresponding systems with unbounded capacity however there are two classes of results which have been known for some time. One of these classes is concerned with the time-dependent solution, where the theory provides a functional equation for the generating function of the time to first emptiness (Kendall (1957)), and the other with the asymptotic stationary distribution of reservoir contents, for which an explicit formula for the generating function is available (Moran (1959)).



2020 ◽  
Vol 26 (4) ◽  
pp. 93-102
Author(s):  
Mouloud Goubi ◽  

The present article deals with a recent study of a new class of q-Hermite-based Apostol-type polynomials introduced by Waseem A. Khan and Divesh Srivastava. We give their explicit formula and study a generalized class depending in any q-analog generating function.



2019 ◽  
Vol 101 (1) ◽  
pp. 35-39 ◽  
Author(s):  
BERNARD L. S. LIN

For positive integers $t_{1},\ldots ,t_{k}$, let $\tilde{p}(n,t_{1},t_{2},\ldots ,t_{k})$ (respectively $p(n,t_{1},t_{2},\ldots ,t_{k})$) be the number of partitions of $n$ such that, if $m$ is the smallest part, then each of $m+t_{1},m+t_{1}+t_{2},\ldots ,m+t_{1}+t_{2}+\cdots +t_{k-1}$ appears as a part and the largest part is at most (respectively equal to) $m+t_{1}+t_{2}+\cdots +t_{k}$. Andrews et al. [‘Partitions with fixed differences between largest and smallest parts’, Proc. Amer. Math. Soc.143 (2015), 4283–4289] found an explicit formula for the generating function of $p(n,t_{1},t_{2},\ldots ,t_{k})$. We establish a $q$-series identity from which the formulae for the generating functions of $\tilde{p}(n,t_{1},t_{2},\ldots ,t_{k})$ and $p(n,t_{1},t_{2},\ldots ,t_{k})$ can be obtained.



2001 ◽  
Vol 12 (01) ◽  
pp. 97-111 ◽  
Author(s):  
TATSURU TAKAKURA

We present an explicit formula for cohomology intersection pairings on an arbitrary smooth symplectic quotient of products of 2-spheres, by the standard diagonal action of SO3, without using known results on relations in the cohomology ring. By the Poincaré duality, it contains all the information enough to recover the structure of the cohomology ring. Our method is based on the commutativity of geometric quantization and symplectic reduction, originating from a conjecture of Guillemin-Sternberg. In fact, it enables us to derive a formula for the generating function of the intersection pairings.



Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 600 ◽  
Author(s):  
Yuriy Shablya ◽  
Dmitry Kruchinin

In this paper, we study such combinatorial objects as labeled binary trees of size n with m ascents on the left branch and labeled Dyck n-paths with m ascents on return steps. For these combinatorial objects, we present the relation of the generated number triangle to Catalan’s and Euler’s triangles. On the basis of properties of Catalan’s and Euler’s triangles, we obtain an explicit formula that counts the total number of such combinatorial objects and a bivariate generating function. Combining the properties of these two number triangles allows us to obtain different combinatorial objects that may have a symmetry, for example, in their form or in their formulas.



2020 ◽  
Vol 29 (1) ◽  
pp. 17-27
Author(s):  
Toufik Mansour ◽  
Mark Shattuck

AbstractLet 𝒯(k)n denote the set of k-Stirling permutations having n distinct letters. Here, we consider the number of steps required (i.e., pushes) to rearrange the letters of a member of 𝒯(k)n so that they occur in non-decreasing order. We find recurrences for the joint distribution on 𝒯(k)n for the statistics recording the number of levels (i.e., occurrences of equal adjacent letters) and pushes. When k = 2, an explicit formula for the ordinary generating function of this distribution is also found. In order to do so, we determine the LU-decomposition of a certain infinite matrix having polynomial entries which enables one to compute explicitly the inverse matrix.



The aim of the present paper is to present a generalization of Gaussian Jacobsthal polynomial and Gaussian Jacobsthal Lucas polynomial. Present paper extends the work of Asci and Gurel [3]. Some important generalizations of Generating function, Binet formula, Explicit formula, Q matrix and determinantal representations of these polynomials are also produced.



2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Vít Jelínek

International audience In this paper, we first derive an explicit formula for the generating function that counts unlabeled interval orders (a.k.a. (2+2)-free posets) with respect to several natural statistics, including their size, magnitude, and the number of minimal and maximal elements. In the second part of the paper, we derive a generating function for the number of self-dual unlabeled interval orders, with respect to the same statistics. Our method is based on a bijective correspondence between interval orders and upper-triangular matrices in which each row and column has a positive entry. Dans cet article, on obtient une expression explicite pour la fonction génératrice du nombre des ensembles partiellement ordonnés (posets) qui évitent le motif (2+2). La fonction compte ces ensembles par rapport à plusieurs statistiques naturelles, incluant le nombre d'éléments, le nombre de niveaux, et le nombre d'éléments minimaux et maximaux. Dans la deuxième partie, on obtient une expression similaire pour la fonction génératrice des posets autoduaux évitant le motif (2+2). On obtient ces résultats à l'aide d'une bijection entre les posets évitant (2+2) et les matrices triangulaires supérieures dont chaque ligne et chaque colonne contient un élément positif.



2018 ◽  
Vol 68 (4) ◽  
pp. 699-712
Author(s):  
José L. Ramírez ◽  
Mark Shattuck

Abstract The symmetric algorithm is a variant of the well-known Euler-Seidel method which has proven useful in the study of linearly recurrent sequences. In this paper, we introduce a multivariate generalization of the symmetric algorithm which reduces to it when all parameters are unity. We derive a general explicit formula via a combinatorial argument and also an expression for the row generating function. Several applications of our algorithm to the q-Fibonacci and q-hyper-Fibonacci numbers are discussed. Among our results is an apparently new recursive formula for the Carlitz Fibonacci polynomials. Finally, a (p, q)-analogue of the algorithm is introduced and an explicit formula for it in terms of the (p, q)-binomial coefficient is found.



1971 ◽  
Vol 8 (4) ◽  
pp. 708-715 ◽  
Author(s):  
Emlyn H. Lloyd

The present theory of finite reservoirs is not rich in general theorems even when of the simple Moran type, with unit draft and stationary discrete independent-sequence inflows. For the corresponding systems with unbounded capacity however there are two classes of results which have been known for some time. One of these classes is concerned with the time-dependent solution, where the theory provides a functional equation for the generating function of the time to first emptiness (Kendall (1957)), and the other with the asymptotic stationary distribution of reservoir contents, for which an explicit formula for the generating function is available (Moran (1959)).



Sign in / Sign up

Export Citation Format

Share Document