scholarly journals A PrioriAssessment of Algebraic Flame Surface Density Models in the Context of Large Eddy Simulation for Nonunity Lewis Number Flames in the Thin Reaction Zones Regime

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Mohit Katragadda ◽  
Nilanjan Chakraborty ◽  
R. S. Cant

The performance of algebraic flame surface density (FSD) models has been assessed for flames with nonunity Lewis number (Le) in the thin reaction zones regime, using a direct numerical simulation (DNS) database of freely propagating turbulent premixed flames with Le ranging from 0.34 to 1.2. The focus is on algebraic FSD models based on a power-law approach, and the effects of Lewis number on the fractal dimensionDand inner cut-off scaleηihave been studied in detail. It has been found thatDis strongly affected by Lewis number and increases significantly with decreasing Le. By contrast,ηiremains close to the laminar flame thermal thickness for all values of Le considered here. A parameterisation ofDis proposed such that the effects of Lewis number are explicitly accounted for. The new parameterisation is used to propose a new algebraic model for FSD. The performance of the new model is assessed with respect to results for the generalised FSD obtained from explicitly LES-filtered DNS data. It has been found that the performance of the most existing models deteriorates with decreasing Lewis number, while the newly proposed model is found to perform as well or better than the most existing algebraic models for FSD.

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Mohit Katragadda ◽  
Nilanjan Chakraborty ◽  
R. S. Cant

A direct numerical simulation (DNS) database of freely propagating statistically planar turbulent premixed flames with a range of different turbulent Reynolds numbers has been used to assess the performance of algebraic flame surface density (FSD) models based on a fractal representation of the flame wrinkling factor. The turbulent Reynolds number Rethas been varied by modifying the Karlovitz number Ka and the Damköhler number Da independently of each other in such a way that the flames remain within the thin reaction zones regime. It has been found that the turbulent Reynolds number and the Karlovitz number both have a significant influence on the fractal dimension, which is found to increase with increasing Retand Ka before reaching an asymptotic value for large values of Retand Ka. A parameterisation of the fractal dimension is presented in which the effects of the Reynolds and the Karlovitz numbers are explicitly taken into account. By contrast, the inner cut-off scale normalised by the Zel’dovich flame thicknessηi/δzdoes not exhibit any significant dependence on Retfor the cases considered here. The performance of several algebraic FSD models has been assessed based on various criteria. Most of the algebraic models show a deterioration in performance with increasing the LES filter width.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Mohit Katragadda ◽  
Nilanjan Chakraborty

A Direct Numerical Simulation (DNS) database of freely propagating statistically planar turbulent premixed flames with Lewis numbersLeranging from 0.34 to 1.2 has been used to analyse the statistical behaviours of the curvature term of the generalised Flame surface Density (FSD) transport equation, in the context of the Large Eddy Simulation (LES). Lewis number is shown to have significant influences on the statistical behaviours of the resolved and sub-grid parts of the FSD curvature term. It has been found that the existing models for the sub-grid curvature termCsgdo not capture the qualitative behaviour of this term extracted from the DNS database for flames withLe<<1. The existing models ofCsgonly predict negative values, whereas the sub-grid curvature term is shown to assume positive values within the flame brush for theLe=0.34and 0.6 flames. Here the sub-grid curvature terms arising from combined reaction and normal diffusion and tangential diffusion components of displacement speed are individually modelled, and the new model of the sub-grid curvature term has been found to captureCsgextracted from DNS data satisfactorily for all the different Lewis number flames considered here for a wide range of filter widths.


Sign in / Sign up

Export Citation Format

Share Document