turbulent reynolds number
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5102
Author(s):  
Vladimir A. Sabelnikov ◽  
Andrei N. Lipatnikov

The influence of statistically stationary, homogeneous isotropic turbulence (i) on the mean area of a passive front propagating in a constant-density fluid and, hence, (ii) on the mean fluid consumption velocity u¯T is explored, particularly in the case of an asymptotically high turbulent Reynolds number, and an asymptotically high ratio of the Kolmogorov velocity to a constant speed u0 of the front. First, a short early transient stage is analyzed by assuming that the front remains close to a material surface that coincides with the front at the initial instant. Therefore, similarly to a material surface, the front area grows exponentially with time. This stage, whose duration is much less than an integral time scale of the turbulent flow, is argued to come to an end once the volume of fluid consumed by the front is equal to the volume embraced due to the turbulent dispersion of the front. The mean fluid consumption velocity averaged over this stage is shown to be proportional to the rms turbulent velocity u′. Second, a late statistically stationary regime of the front evolution is studied. A new length scale characterizing the smallest wrinkles of the front surface is introduced. Since this length scale is smaller than the Kolmogorov length scale ηK under conditions of the present study, the front is hypothesized to be a bifractal with two different fractal dimensions for wrinkles larger and smaller than ηK. Finally, a simple scaling of u¯T∝u′ is obtained for this late stage as well.


2021 ◽  
Vol 21 (1) ◽  
pp. 50-55
Author(s):  
Ammar M. Hadi ◽  
Muneer A. Ismael ◽  
Haider A. Alhattab

This experimental research depicts the role of coating hot surfaces by graphite and graphene on the process of heat dissipation from these hot surfaces. Three aluminum specimens have been prepared for test, one of theme is coated by graphite, another one by graphene a while the third is left free of coating for comparison purpose. Each specimen is tested separately in a home-made wind tunnel. A plate electrical heater is adhered on the bottom of the specimen to simulate the generated energy by a heat sink. A heat sink composed of high thermal conductivity was applied between the heater plate and the base plate of heat sink to reduce the contact resistance to heat flow. The experiments are conducted with four turbulent Reynolds number. The results reveal that the sample coated by graphene exhibits the best thermal dissipation while the uncoated specimen shows the worst thermal performance.


2020 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Thomas Neil McManus ◽  
Ana Rosa ◽  
Assed Haddad

This article describes the development and demonstration of a non-intrusive method for the quantitative determination of speed of air movement along the ground and inside an isolated subsurface structure, a type of confined space. Natural ventilation occurs continuously and reduces risk to entrants from contact with a hazardous atmosphere. One of the most important parameters still undetermined was the speed of air movement during the process. Small puffs of artificial “smoke” were used to visualize air movement. Tracker, an open-source physics program, provided the capability to analyze this movement. Measurement of air speed requires access to individual frames in the video, capability to move forward and backward, and the means to manipulate the image to highlight the “smoke”. Background subtraction, control of brightness and contrast, and conversion of color to greyscale were essential for obtaining these measurements. Measurements for a single opening indicated that flow along the ground was borderline turbulent (Reynolds number ~3000) and in the opening and inside the airspace, within the bounds of laminar flow (Reynolds number <2250). Video obtained during this work showed behavior observable in laboratory studies of Helmholtz resonators. Results provide the basis for a larger study of the ventilation process to facilitate design improvements.


2020 ◽  
pp. 146808742094590
Author(s):  
Yoshihiro Nomura ◽  
Seiji Yamamoto ◽  
Makoto Nagaoka ◽  
Stephan Diel ◽  
Kenta Kurihara ◽  
...  

A new predictive combustion model for a one-dimensional computational fluid dynamics tool in the multibody dynamics processes of gasoline engines was developed and validated. The model consists of (1) a turbulent burning velocity model featuring a flame radius–based transitional function, steady burning velocity that considers local quenching using the Karlovitz number and laminarization by turbulent Reynolds number, as well as turbulent flame thickness and its quenching model near the liner wall, and (2) a knock model featuring auto-ignition by the Livengood–Wu integration and ignition delay time obtained using a full-kinetic model. The proposed model and previous models were verified under a wide range of operating conditions using engines with widely different specifications. Good agreement was only obtained for combustion characteristics by the proposed model without requiring individual calibration of model constants. The model was also evaluated for utilization after prototyping. Improved accuracy, especially of ignition timing, was obtained after further calibration using a small amount of engine data. It was confirmed that the proposed model is highly accurate at the early stage of the engine development process, and is also applicable for engine calibration models that require higher accuracy.


Author(s):  
Jorge A. Ricardo ◽  
Davi Antônio dos Santos ◽  
Elisan dos Santos Magalhães

Abstract The present work addresses the subsonic aerodynamic coefficients model for bluff ellipsoidal hulls at transitional and turbulent Reynolds number. The drag, lift, and moment aerodynamic coefficients model are based on computational fluid dynamics (CFD) simulations for four bluff ellipsoids with aspect ratio of 1, 2, 3, and 4, in the Reynolds number range of 1 × 103 to 2 × 106 and angle of attack range from 0 to 20 degrees. The Large Eddy Simulation (LES) turbulence model is used with the sub-grid turbulence model Wall-Adapting Local-Eddy Viscosity (WALE) to solve the fluid field. To reduce computational simulation time, at a first instant, the mesh is gradually refined until the point that it does not influence anymore in the final result (mesh independence). For each aerodynamic coefficient a nonlinear equation structure, valid for all the ellipsoids, is proposed as a parametric model with parameters estimated using the least mean square algorithm applied to the results of the computational fluid dynamics simulations. The proposed equations have a superior performance, in terms of precision and number of terms, when compared to polynomial equations fitted to the same data.


2019 ◽  
Vol 875 ◽  
pp. 321-344 ◽  
Author(s):  
Tomoaki Watanabe ◽  
Carlos B. da Silva ◽  
Koji Nagata

The non-dimensional dissipation rate $C_{\unicode[STIX]{x1D700}}=\unicode[STIX]{x1D700}L/u^{\prime 3}$, where $\unicode[STIX]{x1D700}$, $L$ and $u^{\prime }$ are the viscous energy dissipation rate, integral length scale of turbulence and root-mean-square of the velocity fluctuations, respectively, is computed and analysed within the turbulent/non-turbulent interfacial (TNTI) layer using direct numerical simulations of a planar jet, mixing layer and shear free turbulence. The TNTI layer that separates the turbulent and non-turbulent regions exists at the edge of free shear turbulent flows and turbulent boundary layers, and comprises both the viscous superlayer and turbulent sublayer regions. The computation of $C_{\unicode[STIX]{x1D700}}$ is made possible by the introduction of an original procedure, based on local volume averages within spheres of radius $r$, combined with conditional sampling as a function of the location with respect to the TNTI layer. The new procedure allows for a detailed investigation of the scale dependence of several turbulent quantities near the TNTI layer. An important achievement of this procedure consists in permitting the computation of the turbulent integral scale within the TNTI layer, which is shown to be approximately constant. Both the non-dimensional dissipation rate and turbulent Reynolds number $Re_{\unicode[STIX]{x1D706}}$ vary in space within the TNTI layer, where two relations are observed: $C_{\unicode[STIX]{x1D700}}\sim Re_{\unicode[STIX]{x1D706}}^{-1}$ and $C_{\unicode[STIX]{x1D700}}\sim Re_{\unicode[STIX]{x1D706}}^{-2}$. Specifically, whereas the viscous superlayer and part of the turbulent sublayer display $C_{\unicode[STIX]{x1D700}}\sim Re_{\unicode[STIX]{x1D706}}^{-2}$, the remaining of the turbulent sublayer exhibits $C_{\unicode[STIX]{x1D700}}\sim Re_{\unicode[STIX]{x1D706}}^{-1}$, which is consistent with non-equilibrium turbulence (Vassilicos, Annu. Rev. Fluid Mech. vol. 47, 2015, pp. 95–114).


2019 ◽  
Vol 862 ◽  
pp. 552-591 ◽  
Author(s):  
M. Kazakova ◽  
G. L. Richard

We present a new approach to model coastal waves in the shoaling and surf zones. The model can be described as a depth-averaged large-eddy simulation model with a cutoff in the inertial subrange. The large-scale turbulence is explicitly resolved through an extra variable called enstrophy while the small-scale turbulence is modelled with a turbulent-viscosity hypothesis. The equations are derived by averaging the mass, momentum and kinetic energy equations assuming a shallow-water flow, a negligible bottom shear stress and a weakly turbulent flow assumption which is not restrictive in practice. The model is fully nonlinear and has the same dispersive properties as the Green–Naghdi equations. It is validated by numerical tests and by comparison with experimental results of the literature on the propagation of a one-dimensional solitary wave over a mild sloping beach. The wave breaking is characterized by a sudden increase of the enstrophy which allows us to propose a breaking criterion based on the new concept of virtual enstrophy. The model features three empirical parameters. The first one governs the turbulent dissipation and was found to be a constant. The eddy viscosity is determined by a turbulent Reynolds number depending only on the bottom slope. The third parameter defines the breaking criterion and depends only on the wave initial nonlinearity. These dependences give a predictive character to the model which is suitable for further developments.


2018 ◽  
Vol 7 (2-1) ◽  
pp. 433
Author(s):  
K. Sri Vamsi Krishna ◽  
Shiva Prasad ◽  
R. Sabari Vihar ◽  
K. Babitha ◽  
K Veeranjaneyulu ◽  
...  

The main objective of this study is to increase the aerodynamic efficiency of turbine mounted novel wing. The main motive behind this work is to reduce the drag by attaining the positive velocity gradient and generate power by converting the stagnation pressure which also acts as emergency power source. By using the energy source of free stream air, Mechanical energy is converted into electrical energy. The obtained power is presented in terms of voltage generated at various angles of attack with different Reynolds number. Experimental analysis is carried out for NACA4415 airfoil at various angles with respect to free stream ranging from 0deg to 30deg from laminar to turbulent Reynolds number. The results were obtained using the research tunnel at IARE aerodynamic facility center. The aerodynamic advantage of this design in terms of voltage is 9.5 V at 35m/s which can be utilized for the aircraft on board power systems.


2017 ◽  
Vol 836 ◽  
pp. 1009-1049 ◽  
Author(s):  
B. Viggiano ◽  
T. Dib ◽  
N. Ali ◽  
L. G. Mastin ◽  
R. B. Cal ◽  
...  

Geophysical flows occur over a large range of scales, with Reynolds numbers and Richardson numbers varying over several orders of magnitude. For this study, jets of different densities were ejected vertically into a large ambient region, considering conditions relevant to some geophysical phenomena. Using particle image velocimetry, the velocity fields were measured for three different gases exhausting into air – specifically helium, air and argon. Measurements focused on both the jet core and the entrained ambient. Experiments considered relatively low Reynolds numbers from approximately 1500 to 10 000 with Richardson numbers near 0.001 in magnitude. These included a variety of flow responses, notably a nearly laminar jet, turbulent jets and a transitioning jet in between. Several features were studied, including the jet development, the local entrainment ratio, the turbulent Reynolds stresses and the eddy strength. Compared to a fully turbulent jet, the transitioning jet showed up to 50 % higher local entrainment and more significant turbulent fluctuations. For this condition, the eddies were non-axisymmetric and larger than the exit radius. For turbulent jets, the eddies were initially smaller and axisymmetric while growing with the shear layer. At lower turbulent Reynolds number, the turbulent stresses were more than 50 % higher than at higher turbulent Reynolds number. In either case, the low-density jet developed faster than a comparable non-buoyant jet. Quadrant analysis and proper orthogonal decomposition were also utilized for insight into the entrainment of the jet, as well as to assess the energy distribution with respect to the number of eigenmodes. Reynolds shear stresses were dominant in Q1 and Q3 and exhibited negligible contributions from the remaining two quadrants. Both analysis techniques showed that the development of stresses downstream was dependent on the Reynolds number while the spanwise location of the stresses depended on the Richardson number.


Author(s):  
Z. Ren ◽  
W. Buzzard ◽  
P. M. Ligrani

The present investigation considers the effects of special roughness patterns on impingement target surfaces to improve the effectiveness and surface heat transfer augmentation levels of impingement jet array cooling. This investigation utilizes various sizes, distributions, shapes, and patterns of surface roughness elements for impingement cooling augmentation. In total, fifteen different test surfaces are considered, either with cylinder small roughness, triangle small roughness, or rectangle small roughness element shapes. Six of these test surfaces also employ large roughness elements with rectangular shapes (along with either triangle or rectangle small roughness elements). Tests are performed at impingement jet Reynolds numbers of 900 and 11000. Nusselt number variations for the small cylinder roughness show different trends with streamwise development and changing roughness height, compared to target plates with small rectangle roughness and small triangle roughness. In general, this is because roughness elements which contain surface shapes with sharp edges generate increased magnitudes of vorticity with length scales of the order of the roughness element diameter. Such generation is not always present in an abundant fashion with the small cylinder roughness because of the smooth contours around each roughness element periphery. Such effects are illustrated by several data sets, including Nusselt numbers associated with the small cylinder roughness with a height of 0.250D at a turbulent Reynolds number of 11000.


Sign in / Sign up

Export Citation Format

Share Document